The chromatic Brauer category and its linear representations
The Brauer category is a symmetric strict monoidal category that arises as a (horizontal) categorification of the Brauer algebras in the context of Banagl’s framework of positive topological field theories (TFTs). We introduce the chromatic Brauer category as an enrichment of the Brauer category in...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Applied categorical structures
Year: 2021, Jahrgang: 29, Heft: 2, Pages: 349-377 |
| ISSN: | 1572-9095 |
| DOI: | 10.1007/s10485-020-09619-5 |
| Online-Zugang: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s10485-020-09619-5 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s10485-020-09619-5 |
| Verfasserangaben: | L. Felipe Müller, Dominik J. Wrazidlo |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1761089404 | ||
| 003 | DE-627 | ||
| 005 | 20221123153628.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210623s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10485-020-09619-5 |2 doi | |
| 035 | |a (DE-627)1761089404 | ||
| 035 | |a (DE-599)KXP1761089404 | ||
| 035 | |a (OCoLC)1341416769 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Müller, Luis Felipe |d 1989- |e VerfasserIn |0 (DE-588)1154802698 |0 (DE-627)1016160046 |0 (DE-576)501234381 |4 aut | |
| 245 | 1 | 4 | |a The chromatic Brauer category and its linear representations |c L. Felipe Müller, Dominik J. Wrazidlo |
| 264 | 1 | |c 2021 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 2 December 2020 | ||
| 500 | |a Gesehen am 23.06.2021 | ||
| 520 | |a The Brauer category is a symmetric strict monoidal category that arises as a (horizontal) categorification of the Brauer algebras in the context of Banagl’s framework of positive topological field theories (TFTs). We introduce the chromatic Brauer category as an enrichment of the Brauer category in which the morphisms are component-wise labeled. Linear representations of the (chromatic) Brauer category are symmetric strict monoidal functors into the category of real vector spaces and linear maps equipped with the Schauenburg tensor product. We study representation theory of the (chromatic) Brauer category, and classify all its faithful linear representations. As an application, we use indices of fold lines to construct a refinement of Banagl’s concrete positive TFT based on fold maps into the plane. | ||
| 700 | 1 | |a Wrazidlo, Dominik |e VerfasserIn |0 (DE-588)1140508032 |0 (DE-627)898523915 |0 (DE-576)493838635 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Applied categorical structures |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 |g 29(2021), 2, Seite 349-377 |h Online-Ressource |w (DE-627)269539077 |w (DE-600)1475519-1 |w (DE-576)12119034X |x 1572-9095 |7 nnas |a The chromatic Brauer category and its linear representations |
| 773 | 1 | 8 | |g volume:29 |g year:2021 |g number:2 |g pages:349-377 |g extent:29 |a The chromatic Brauer category and its linear representations |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10485-020-09619-5 |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s10485-020-09619-5 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210623 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1140508032 |a Wrazidlo, Dominik |m 1140508032:Wrazidlo, Dominik |p 2 |y j | ||
| 998 | |g 1154802698 |a Müller, Luis Felipe |m 1154802698:Müller, Luis Felipe |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PM1154802698 |e 110100PM1154802698 |e 110000PM1154802698 |e 110400PM1154802698 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1761089404 |e 394088622X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 2 December 2020","Gesehen am 23.06.2021"],"language":["eng"],"recId":"1761089404","person":[{"family":"Müller","given":"Luis Felipe","display":"Müller, Luis Felipe","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Dominik","family":"Wrazidlo","role":"aut","roleDisplay":"VerfasserIn","display":"Wrazidlo, Dominik"}],"title":[{"title_sort":"chromatic Brauer category and its linear representations","title":"The chromatic Brauer category and its linear representations"}],"physDesc":[{"extent":"29 S."}],"relHost":[{"title":[{"title":"Applied categorical structures","subtitle":"a journal devoted to applications of categorical methods in algebra, analysis, order, topology and computer science","title_sort":"Applied categorical structures"}],"disp":"The chromatic Brauer category and its linear representationsApplied categorical structures","note":["Gesehen am 31.10.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"269539077","language":["eng"],"pubHistory":["1.1993 -"],"part":{"extent":"29","text":"29(2021), 2, Seite 349-377","volume":"29","pages":"349-377","issue":"2","year":"2021"},"origin":[{"dateIssuedDisp":"1993-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1993","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"zdb":["1475519-1"],"eki":["269539077"],"issn":["1572-9095"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["L. Felipe Müller, Dominik J. Wrazidlo"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"id":{"eki":["1761089404"],"doi":["10.1007/s10485-020-09619-5"]}} | ||
| SRT | |a MUELLERLUICHROMATICB2021 | ||