Time-bounded Kolmogorov complexity and Solovay functions

A Solovay function is an upper bound g for prefix-free Kolmogorov complexity K that is nontrivial in the sense that g agrees with K, up to some additive constant, on infinitely many places n. We obtain natural examples of computable Solovay functions by showing that for some constant c0 and all comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hölzl, Rupert (VerfasserIn) , Kräling, Thorsten (VerfasserIn) , Merkle, Wolfgang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: Theory of computing systems
Year: 2013, Jahrgang: 52, Heft: 1, Pages: 80-94
ISSN:1433-0490
DOI:10.1007/s00224-012-9413-4
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00224-012-9413-4
Volltext
Verfasserangaben:Rupert Hölzl, Thorsten Kräling, Wolfgang Merkle
Beschreibung
Zusammenfassung:A Solovay function is an upper bound g for prefix-free Kolmogorov complexity K that is nontrivial in the sense that g agrees with K, up to some additive constant, on infinitely many places n. We obtain natural examples of computable Solovay functions by showing that for some constant c0 and all computable functions t such that c0n≤t(n), the time-bounded version Ktof K is a Solovay function.
Beschreibung:Gesehen am 29.06.2021
Published: 17 May 2012
Beschreibung:Online Resource
ISSN:1433-0490
DOI:10.1007/s00224-012-9413-4