Exceptional Legendre polynomials and confluent Darboux transformations

Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of ''...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: García-Ferrero, María Ángeles (VerfasserIn) , Gómez-Ullate, David (VerfasserIn) , Milson, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 20, 2021
In: Symmetry, integrability and geometry: methods and applications
Year: 2021, Jahrgang: 17, Pages: 1-19
ISSN:1815-0659
DOI:10.3842/SIGMA.2021.016
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.3842/SIGMA.2021.016
Verlag, lizenzpflichtig, Volltext: https://www.emis.de/journals/SIGMA/2021/016/
Volltext
Verfasserangaben:María Ángeles García-Ferrero, David Gómez-Ullate and Robert Milson
Beschreibung
Zusammenfassung:Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of ''exceptional'' degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator.
Beschreibung:Gesehen am 29.06.2021
Beschreibung:Online Resource
ISSN:1815-0659
DOI:10.3842/SIGMA.2021.016