On two methods for quantitative unique continuation results for some nonlocal operators
In this article, we present two mechanisms for deducing logarithmic quantitative unique continuation bounds for certain classes of integral operators. In our first method, expanding the corresponding integral kernels, we exploit the logarithmic stability of the moment problem. In our second method w...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
28 Jun 2020
|
| In: |
Communications in partial differential equations
Year: 2020, Volume: 45, Issue: 11, Pages: 1512-1560 |
| ISSN: | 1532-4133 |
| DOI: | 10.1080/03605302.2020.1776323 |
| Online Access: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1080/03605302.2020.1776323 Verlag, lizenzpflichtig, Volltext: https://www.tandfonline.com/doi/full/10.1080/03605302.2020.1776323 |
| Author Notes: | María Ángeles García-Ferrero & Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1761473263 | ||
| 003 | DE-627 | ||
| 005 | 20220820010000.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210629s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/03605302.2020.1776323 |2 doi | |
| 035 | |a (DE-627)1761473263 | ||
| 035 | |a (DE-599)KXP1761473263 | ||
| 035 | |a (OCoLC)1341417816 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a García-Ferrero, María Ángeles |d 1991- |e VerfasserIn |0 (DE-588)1233397990 |0 (DE-627)1757753737 |4 aut | |
| 245 | 1 | 0 | |a On two methods for quantitative unique continuation results for some nonlocal operators |c María Ángeles García-Ferrero & Angkana Rüland |
| 264 | 1 | |c 28 Jun 2020 | |
| 300 | |a 49 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.06.2021 | ||
| 520 | |a In this article, we present two mechanisms for deducing logarithmic quantitative unique continuation bounds for certain classes of integral operators. In our first method, expanding the corresponding integral kernels, we exploit the logarithmic stability of the moment problem. In our second method we rely on the presence of branch-cut singularities for certain Fourier multipliers. As an application we present quantitative Runge approximation results for the operator Ls(D)=∑j=1n(−∂xj2)s+q with s∈[12,1) and q∈L∞ acting on functions on Rn. | ||
| 650 | 4 | |a Logarithmic stability | |
| 650 | 4 | |a moment problem | |
| 650 | 4 | |a nonlocal operators | |
| 650 | 4 | |a unique continuation | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Communications in partial differential equations |d Philadelphia, Pa. : Taylor & Francis, 1976 |g 45(2020), 11, Seite 1512-1560 |h Online-Ressource |w (DE-627)326048049 |w (DE-600)2041734-2 |w (DE-576)116330961 |x 1532-4133 |7 nnas |a On two methods for quantitative unique continuation results for some nonlocal operators |
| 773 | 1 | 8 | |g volume:45 |g year:2020 |g number:11 |g pages:1512-1560 |g extent:49 |a On two methods for quantitative unique continuation results for some nonlocal operators |
| 856 | 4 | 0 | |u https://doi.org/10.1080/03605302.2020.1776323 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.tandfonline.com/doi/full/10.1080/03605302.2020.1776323 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210629 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 998 | |g 1233397990 |a García-Ferrero, María Ángeles |m 1233397990:García-Ferrero, María Ángeles |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PG1233397990 |e 110200PG1233397990 |e 110000PG1233397990 |e 110400PG1233397990 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1761473263 |e 3942446928 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"María Ángeles","family":"García-Ferrero","role":"aut","roleDisplay":"VerfasserIn","display":"García-Ferrero, María Ángeles"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}],"title":[{"title":"On two methods for quantitative unique continuation results for some nonlocal operators","title_sort":"On two methods for quantitative unique continuation results for some nonlocal operators"}],"recId":"1761473263","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 29.06.2021"],"name":{"displayForm":["María Ángeles García-Ferrero & Angkana Rüland"]},"id":{"doi":["10.1080/03605302.2020.1776323"],"eki":["1761473263"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"28 Jun 2020"}],"relHost":[{"title":[{"title_sort":"Communications in partial differential equations","title":"Communications in partial differential equations"}],"recId":"326048049","language":["eng"],"disp":"On two methods for quantitative unique continuation results for some nonlocal operatorsCommunications in partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 25.05.09"],"part":{"extent":"49","text":"45(2020), 11, Seite 1512-1560","volume":"45","issue":"11","pages":"1512-1560","year":"2020"},"pubHistory":["1.1976 -"],"id":{"eki":["326048049"],"zdb":["2041734-2"],"issn":["1532-4133"]},"origin":[{"publisherPlace":"Philadelphia, Pa. ; New York, NY","dateIssuedKey":"1976","publisher":"Taylor & Francis ; Dekker","dateIssuedDisp":"1976-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"49 S."}]} | ||
| SRT | |a GARCIAFERRONTWOMETHO2820 | ||