On two methods for quantitative unique continuation results for some nonlocal operators

In this article, we present two mechanisms for deducing logarithmic quantitative unique continuation bounds for certain classes of integral operators. In our first method, expanding the corresponding integral kernels, we exploit the logarithmic stability of the moment problem. In our second method w...

Full description

Saved in:
Bibliographic Details
Main Authors: García-Ferrero, María Ángeles (Author) , Rüland, Angkana (Author)
Format: Article (Journal)
Language:English
Published: 28 Jun 2020
In: Communications in partial differential equations
Year: 2020, Volume: 45, Issue: 11, Pages: 1512-1560
ISSN:1532-4133
DOI:10.1080/03605302.2020.1776323
Online Access:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1080/03605302.2020.1776323
Verlag, lizenzpflichtig, Volltext: https://www.tandfonline.com/doi/full/10.1080/03605302.2020.1776323
Get full text
Author Notes:María Ángeles García-Ferrero & Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1761473263
003 DE-627
005 20220820010000.0
007 cr uuu---uuuuu
008 210629s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/03605302.2020.1776323  |2 doi 
035 |a (DE-627)1761473263 
035 |a (DE-599)KXP1761473263 
035 |a (OCoLC)1341417816 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a García-Ferrero, María Ángeles  |d 1991-  |e VerfasserIn  |0 (DE-588)1233397990  |0 (DE-627)1757753737  |4 aut 
245 1 0 |a On two methods for quantitative unique continuation results for some nonlocal operators  |c María Ángeles García-Ferrero & Angkana Rüland 
264 1 |c 28 Jun 2020 
300 |a 49 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.06.2021 
520 |a In this article, we present two mechanisms for deducing logarithmic quantitative unique continuation bounds for certain classes of integral operators. In our first method, expanding the corresponding integral kernels, we exploit the logarithmic stability of the moment problem. In our second method we rely on the presence of branch-cut singularities for certain Fourier multipliers. As an application we present quantitative Runge approximation results for the operator Ls(D)=∑j=1n(−∂xj2)s+q with s∈[12,1) and q∈L∞ acting on functions on Rn. 
650 4 |a Logarithmic stability 
650 4 |a moment problem 
650 4 |a nonlocal operators 
650 4 |a unique continuation 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Communications in partial differential equations  |d Philadelphia, Pa. : Taylor & Francis, 1976  |g 45(2020), 11, Seite 1512-1560  |h Online-Ressource  |w (DE-627)326048049  |w (DE-600)2041734-2  |w (DE-576)116330961  |x 1532-4133  |7 nnas  |a On two methods for quantitative unique continuation results for some nonlocal operators 
773 1 8 |g volume:45  |g year:2020  |g number:11  |g pages:1512-1560  |g extent:49  |a On two methods for quantitative unique continuation results for some nonlocal operators 
856 4 0 |u https://doi.org/10.1080/03605302.2020.1776323  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.tandfonline.com/doi/full/10.1080/03605302.2020.1776323  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210629 
993 |a Article 
994 |a 2020 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
998 |g 1233397990  |a García-Ferrero, María Ángeles  |m 1233397990:García-Ferrero, María Ángeles  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PG1233397990  |e 110200PG1233397990  |e 110000PG1233397990  |e 110400PG1233397990  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1761473263  |e 3942446928 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"María Ángeles","family":"García-Ferrero","role":"aut","roleDisplay":"VerfasserIn","display":"García-Ferrero, María Ángeles"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"}],"title":[{"title":"On two methods for quantitative unique continuation results for some nonlocal operators","title_sort":"On two methods for quantitative unique continuation results for some nonlocal operators"}],"recId":"1761473263","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 29.06.2021"],"name":{"displayForm":["María Ángeles García-Ferrero & Angkana Rüland"]},"id":{"doi":["10.1080/03605302.2020.1776323"],"eki":["1761473263"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"28 Jun 2020"}],"relHost":[{"title":[{"title_sort":"Communications in partial differential equations","title":"Communications in partial differential equations"}],"recId":"326048049","language":["eng"],"disp":"On two methods for quantitative unique continuation results for some nonlocal operatorsCommunications in partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 25.05.09"],"part":{"extent":"49","text":"45(2020), 11, Seite 1512-1560","volume":"45","issue":"11","pages":"1512-1560","year":"2020"},"pubHistory":["1.1976 -"],"id":{"eki":["326048049"],"zdb":["2041734-2"],"issn":["1532-4133"]},"origin":[{"publisherPlace":"Philadelphia, Pa. ; New York, NY","dateIssuedKey":"1976","publisher":"Taylor & Francis ; Dekker","dateIssuedDisp":"1976-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"49 S."}]} 
SRT |a GARCIAFERRONTWOMETHO2820