Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions

We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous deriv...

Full description

Saved in:
Bibliographic Details
Main Authors: Gahn, Markus (Author) , Neuss-Radu, Maria (Author) , Pop, Iuliu Sorin (Author)
Format: Article (Journal)
Language:English
Published: 23 April 2021
In: Journal of differential equations
Year: 2021, Volume: 289, Pages: 95-127
ISSN:1090-2732
DOI:10.1016/j.jde.2021.04.013
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2021.04.013
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039621002436
Get full text
Author Notes:M. Gahn, M. Neuss-Radu, I.S. Pop

MARC

LEADER 00000caa a2200000 c 4500
001 1761737953
003 DE-627
005 20220820011553.0
007 cr uuu---uuuuu
008 210701s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2021.04.013  |2 doi 
035 |a (DE-627)1761737953 
035 |a (DE-599)KXP1761737953 
035 |a (OCoLC)1341418068 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gahn, Markus  |e VerfasserIn  |0 (DE-588)112652302X  |0 (DE-627)880999675  |0 (DE-576)484545841  |4 aut 
245 1 0 |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions  |c M. Gahn, M. Neuss-Radu, I.S. Pop 
264 1 |c 23 April 2021 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.07.2021 
520 |a We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compactness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro- and the macro-variable, and the evolution of the underlying microstructure is approximated by time- and space-dependent reference elements. 
650 4 |a Evolving micro-domain 
650 4 |a Homogenization 
650 4 |a Nonlinear boundary condition 
650 4 |a Reaction-diffusion-advection equation 
650 4 |a Strong two-scale convergence 
650 4 |a Unfolding operator 
700 1 |a Neuss-Radu, Maria  |e VerfasserIn  |0 (DE-588)1074040643  |0 (DE-627)83020654X  |0 (DE-576)181731703  |4 aut 
700 1 |a Pop, Iuliu Sorin  |d 1969-  |e VerfasserIn  |0 (DE-588)1153089971  |0 (DE-627)1014494532  |0 (DE-576)177823038  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 289(2021), Seite 95-127  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions 
773 1 8 |g volume:289  |g year:2021  |g pages:95-127  |g extent:33  |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions 
856 4 0 |u https://doi.org/10.1016/j.jde.2021.04.013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022039621002436  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210701 
993 |a Article 
994 |a 2021 
998 |g 112652302X  |a Gahn, Markus  |m 112652302X:Gahn, Markus  |d 700000  |d 708000  |e 700000PG112652302X  |e 708000PG112652302X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1761737953  |e 3942916886 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"23 April 2021","dateIssuedKey":"2021"}],"person":[{"role":"aut","display":"Gahn, Markus","family":"Gahn","given":"Markus"},{"role":"aut","display":"Neuss-Radu, Maria","family":"Neuss-Radu","given":"Maria"},{"family":"Pop","given":"Iuliu Sorin","display":"Pop, Iuliu Sorin","role":"aut"}],"title":[{"title_sort":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions","title":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions"}],"note":["Gesehen am 01.07.2021"],"name":{"displayForm":["M. Gahn, M. Neuss-Radu, I.S. Pop"]},"relHost":[{"id":{"issn":["1090-2732"],"zdb":["1469173-5"],"eki":["266892566"]},"recId":"266892566","language":["eng"],"disp":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditionsJournal of differential equations","physDesc":[{"extent":"Online-Ressource"}],"part":{"extent":"33","pages":"95-127","volume":"289","text":"289(2021), Seite 95-127","year":"2021"},"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"dateIssuedKey":"1965","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press"}],"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"pubHistory":["1.1965 -"],"note":["Gesehen am 16.07.13"]}],"recId":"1761737953","id":{"doi":["10.1016/j.jde.2021.04.013"],"eki":["1761737953"]},"language":["eng"],"physDesc":[{"extent":"33 S."}]} 
SRT |a GAHNMARKUSHOMOGENIZA2320