Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions
We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous deriv...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
23 April 2021
|
| In: |
Journal of differential equations
Year: 2021, Volume: 289, Pages: 95-127 |
| ISSN: | 1090-2732 |
| DOI: | 10.1016/j.jde.2021.04.013 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2021.04.013 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039621002436 |
| Author Notes: | M. Gahn, M. Neuss-Radu, I.S. Pop |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1761737953 | ||
| 003 | DE-627 | ||
| 005 | 20220820011553.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210701s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jde.2021.04.013 |2 doi | |
| 035 | |a (DE-627)1761737953 | ||
| 035 | |a (DE-599)KXP1761737953 | ||
| 035 | |a (OCoLC)1341418068 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gahn, Markus |e VerfasserIn |0 (DE-588)112652302X |0 (DE-627)880999675 |0 (DE-576)484545841 |4 aut | |
| 245 | 1 | 0 | |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions |c M. Gahn, M. Neuss-Radu, I.S. Pop |
| 264 | 1 | |c 23 April 2021 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 01.07.2021 | ||
| 520 | |a We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compactness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro- and the macro-variable, and the evolution of the underlying microstructure is approximated by time- and space-dependent reference elements. | ||
| 650 | 4 | |a Evolving micro-domain | |
| 650 | 4 | |a Homogenization | |
| 650 | 4 | |a Nonlinear boundary condition | |
| 650 | 4 | |a Reaction-diffusion-advection equation | |
| 650 | 4 | |a Strong two-scale convergence | |
| 650 | 4 | |a Unfolding operator | |
| 700 | 1 | |a Neuss-Radu, Maria |e VerfasserIn |0 (DE-588)1074040643 |0 (DE-627)83020654X |0 (DE-576)181731703 |4 aut | |
| 700 | 1 | |a Pop, Iuliu Sorin |d 1969- |e VerfasserIn |0 (DE-588)1153089971 |0 (DE-627)1014494532 |0 (DE-576)177823038 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of differential equations |d Orlando, Fla. : Elsevier, 1965 |g 289(2021), Seite 95-127 |h Online-Ressource |w (DE-627)266892566 |w (DE-600)1469173-5 |w (DE-576)103373209 |x 1090-2732 |7 nnas |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions |
| 773 | 1 | 8 | |g volume:289 |g year:2021 |g pages:95-127 |g extent:33 |a Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jde.2021.04.013 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0022039621002436 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210701 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 112652302X |a Gahn, Markus |m 112652302X:Gahn, Markus |d 700000 |d 708000 |e 700000PG112652302X |e 708000PG112652302X |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1761737953 |e 3942916886 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"23 April 2021","dateIssuedKey":"2021"}],"person":[{"role":"aut","display":"Gahn, Markus","family":"Gahn","given":"Markus"},{"role":"aut","display":"Neuss-Radu, Maria","family":"Neuss-Radu","given":"Maria"},{"family":"Pop","given":"Iuliu Sorin","display":"Pop, Iuliu Sorin","role":"aut"}],"title":[{"title_sort":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions","title":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions"}],"note":["Gesehen am 01.07.2021"],"name":{"displayForm":["M. Gahn, M. Neuss-Radu, I.S. Pop"]},"relHost":[{"id":{"issn":["1090-2732"],"zdb":["1469173-5"],"eki":["266892566"]},"recId":"266892566","language":["eng"],"disp":"Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditionsJournal of differential equations","physDesc":[{"extent":"Online-Ressource"}],"part":{"extent":"33","pages":"95-127","volume":"289","text":"289(2021), Seite 95-127","year":"2021"},"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"dateIssuedKey":"1965","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press"}],"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"pubHistory":["1.1965 -"],"note":["Gesehen am 16.07.13"]}],"recId":"1761737953","id":{"doi":["10.1016/j.jde.2021.04.013"],"eki":["1761737953"]},"language":["eng"],"physDesc":[{"extent":"33 S."}]} | ||
| SRT | |a GAHNMARKUSHOMOGENIZA2320 | ||