Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions

We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gahn, Markus (VerfasserIn) , Neuss-Radu, Maria (VerfasserIn) , Pop, Iuliu Sorin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 April 2021
In: Journal of differential equations
Year: 2021, Jahrgang: 289, Pages: 95-127
ISSN:1090-2732
DOI:10.1016/j.jde.2021.04.013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2021.04.013
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039621002436
Volltext
Verfasserangaben:M. Gahn, M. Neuss-Radu, I.S. Pop
Beschreibung
Zusammenfassung:We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compactness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro- and the macro-variable, and the evolution of the underlying microstructure is approximated by time- and space-dependent reference elements.
Beschreibung:Gesehen am 01.07.2021
Beschreibung:Online Resource
ISSN:1090-2732
DOI:10.1016/j.jde.2021.04.013