Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs

This study aimed to develop an automated computer-based algorithm to predict axial length and subfoveal choroidal thickness (SFCT) based on color fundus photographs. In the population-based Beijing Eye Study 2011, we took fundus photographs and measured SFCT by optical coherence tomography (OCT) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong, Li (VerfasserIn) , Hu, Xin Yue (VerfasserIn) , Yan, Yan Ni (VerfasserIn) , Zhang, Qi (VerfasserIn) , Zhou, Nan (VerfasserIn) , Shao, Lei (VerfasserIn) , Wang, Ya Xing (VerfasserIn) , Xu, Jie (VerfasserIn) , Lan, Yin Jun (VerfasserIn) , Li, Yang (VerfasserIn) , Xiong, Jian Hao (VerfasserIn) , Liu, Cong Xin (VerfasserIn) , Ge, Zong Yuan (VerfasserIn) , Jonas, Jost B. (VerfasserIn) , Wei, Wen Bin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 09 April 2021
In: Frontiers in cell and developmental biology
Year: 2021, Jahrgang: 9, Pages: 1-8
ISSN:2296-634X
DOI:10.3389/fcell.2021.653692
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fcell.2021.653692
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fcell.2021.653692/full
Volltext
Verfasserangaben:Li Dong, Xin Yue Hu, Yan Ni Yan, Qi Zhang, Nan Zhou, Lei Shao, Ya Xing Wang, Jie Xu, Yin Jun Lan, Yang Li, Jian Hao Xiong, Cong Xin Liu, Zong Yuan Ge, Jost B. Jonas and Wen Bin Wei

MARC

LEADER 00000caa a2200000 c 4500
001 1762709384
003 DE-627
005 20220820014439.0
007 cr uuu---uuuuu
008 210712s2021 xx |||||o 00| ||eng c
024 7 |a 10.3389/fcell.2021.653692  |2 doi 
035 |a (DE-627)1762709384 
035 |a (DE-599)KXP1762709384 
035 |a (OCoLC)1341418418 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Dong, Li  |e VerfasserIn  |0 (DE-588)1212628586  |0 (DE-627)170216926X  |4 aut 
245 1 0 |a Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs  |c Li Dong, Xin Yue Hu, Yan Ni Yan, Qi Zhang, Nan Zhou, Lei Shao, Ya Xing Wang, Jie Xu, Yin Jun Lan, Yang Li, Jian Hao Xiong, Cong Xin Liu, Zong Yuan Ge, Jost B. Jonas and Wen Bin Wei 
264 1 |c 09 April 2021 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.07.2021 
520 |a This study aimed to develop an automated computer-based algorithm to predict axial length and subfoveal choroidal thickness (SFCT) based on color fundus photographs. In the population-based Beijing Eye Study 2011, we took fundus photographs and measured SFCT by optical coherence tomography (OCT) and axial length by optical low-coherence reflectometry. Using 6,394 color fundus images taken from 3,468 participants, we trained and evaluated a deep learning-based algorithm for estimation of axial length and SFCT. The algorithm had a mean absolute error (MAE) for predicting axial length and SFCT of 0.56 mm (95% confidence interval (CI):0.53,0.61) and 49.20 μm (95% CI:45.83,52.54), respectively. Predicted values and measured data showed coefficients of determination of r2=0.59 (95% CI:0.50,0.65) for axial length and r2=0.62 (95% CI: 0.57,0.67) for SFCT. Bland-Altman plots revealed a mean difference in axial length and SFCT of -0.16mm (95% CI:-1.60,1.27mm) and of -4.40 μm (95%CI:-131.8,122.9 μm), respectively. For the prediction of axial length, heat map analysis showed that signals predominantly from overall of the macular region, the foveal region and the extrafoveal region were used in eyes with an axial length of 26 mm, respectively. For the prediction of SFCT, the CNN used mostly the central part of the macular region, the fovea or perifovea, independently of the SFCT. Our study shows deep learning-based algorithms may be helpful in estimating axial length and SFCT based on conventional color fundus images. They may be a further step in the semi-automatic assessment of the eye. 
650 4 |a Axial length 
650 4 |a Convolution Neural Network 
650 4 |a deep learning 
650 4 |a fundus image 
650 4 |a fundus photography 
650 4 |a Subfoveal choroidal thickness 
700 1 |a Hu, Xin Yue  |e VerfasserIn  |4 aut 
700 1 |a Yan, Yan Ni  |e VerfasserIn  |4 aut 
700 1 |a Zhang, Qi  |e VerfasserIn  |4 aut 
700 1 |a Zhou, Nan  |e VerfasserIn  |4 aut 
700 1 |a Shao, Lei  |e VerfasserIn  |4 aut 
700 1 |a Wang, Ya Xing  |e VerfasserIn  |4 aut 
700 1 |a Xu, Jie  |e VerfasserIn  |4 aut 
700 1 |a Lan, Yin Jun  |e VerfasserIn  |4 aut 
700 1 |a Li, Yang  |e VerfasserIn  |4 aut 
700 1 |a Xiong, Jian Hao  |e VerfasserIn  |4 aut 
700 1 |a Liu, Cong Xin  |e VerfasserIn  |4 aut 
700 1 |a Ge, Zong Yuan  |e VerfasserIn  |4 aut 
700 1 |a Jonas, Jost B.  |d 1958-  |e VerfasserIn  |0 (DE-588)1028286732  |0 (DE-627)730536823  |0 (DE-576)37578537X  |4 aut 
700 1 |a Wei, Wen Bin  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in cell and developmental biology  |d Lausanne : Frontiers Media, 2013  |g 9(2021), Artikel-ID 653692, Seite 1-8  |h Online-Ressource  |w (DE-627)770398138  |w (DE-600)2737824-X  |w (DE-576)394650182  |x 2296-634X  |7 nnas  |a Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs 
773 1 8 |g volume:9  |g year:2021  |g elocationid:653692  |g pages:1-8  |g extent:8  |a Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs 
856 4 0 |u https://doi.org/10.3389/fcell.2021.653692  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fcell.2021.653692/full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210712 
993 |a Article 
994 |a 2021 
998 |g 1028286732  |a Jonas, Jost B.  |m 1028286732:Jonas, Jost B.  |d 60000  |e 60000PJ1028286732  |k 0/60000/  |p 14 
999 |a KXP-PPN1762709384  |e 3947907036 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"name":{"displayForm":["Li Dong, Xin Yue Hu, Yan Ni Yan, Qi Zhang, Nan Zhou, Lei Shao, Ya Xing Wang, Jie Xu, Yin Jun Lan, Yang Li, Jian Hao Xiong, Cong Xin Liu, Zong Yuan Ge, Jost B. Jonas and Wen Bin Wei"]},"recId":"1762709384","person":[{"given":"Li","display":"Dong, Li","role":"aut","family":"Dong"},{"display":"Hu, Xin Yue","given":"Xin Yue","role":"aut","family":"Hu"},{"role":"aut","family":"Yan","display":"Yan, Yan Ni","given":"Yan Ni"},{"role":"aut","family":"Zhang","given":"Qi","display":"Zhang, Qi"},{"family":"Zhou","role":"aut","given":"Nan","display":"Zhou, Nan"},{"given":"Lei","display":"Shao, Lei","family":"Shao","role":"aut"},{"display":"Wang, Ya Xing","given":"Ya Xing","family":"Wang","role":"aut"},{"role":"aut","family":"Xu","display":"Xu, Jie","given":"Jie"},{"display":"Lan, Yin Jun","given":"Yin Jun","role":"aut","family":"Lan"},{"role":"aut","family":"Li","given":"Yang","display":"Li, Yang"},{"family":"Xiong","role":"aut","given":"Jian Hao","display":"Xiong, Jian Hao"},{"role":"aut","family":"Liu","given":"Cong Xin","display":"Liu, Cong Xin"},{"role":"aut","family":"Ge","display":"Ge, Zong Yuan","given":"Zong Yuan"},{"role":"aut","family":"Jonas","given":"Jost B.","display":"Jonas, Jost B."},{"role":"aut","family":"Wei","given":"Wen Bin","display":"Wei, Wen Bin"}],"note":["Gesehen am 12.07.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs","title_sort":"Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs"}],"id":{"eki":["1762709384"],"doi":["10.3389/fcell.2021.653692"]},"physDesc":[{"extent":"8 S."}],"relHost":[{"origin":[{"publisher":"Frontiers Media","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisherPlace":"Lausanne"}],"title":[{"title":"Frontiers in cell and developmental biology","title_sort":"Frontiers in cell and developmental biology"}],"id":{"eki":["770398138"],"issn":["2296-634X"],"zdb":["2737824-X"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"770398138","titleAlt":[{"title":"FCELL"}],"disp":"Deep learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographsFrontiers in cell and developmental biology","type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["2013 -"],"note":["Gesehen am 04.06.20"],"language":["eng"],"part":{"volume":"9","year":"2021","text":"9(2021), Artikel-ID 653692, Seite 1-8","extent":"8","pages":"1-8"}}],"origin":[{"dateIssuedDisp":"09 April 2021","dateIssuedKey":"2021"}]} 
SRT |a DONGLIHUXIDEEPLEARNI0920