Machine learning for surgical phase recognition: a systematic review

Objective: To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background: Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garrow, Carly R. (VerfasserIn) , Kowalewski, Karl-Friedrich (VerfasserIn) , Li, Linhong (VerfasserIn) , Wagner, Martin (VerfasserIn) , Schmidt, Mona Wanda (VerfasserIn) , Engelhardt, Sandy (VerfasserIn) , Hashimoto, Daniel A. (VerfasserIn) , Kenngott, Hannes Götz (VerfasserIn) , Bodenstedt, Sebastian (VerfasserIn) , Speidel, Stefanie (VerfasserIn) , Müller, Beat P. (VerfasserIn) , Nickel, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2021
In: Annals of surgery
Year: 2021, Jahrgang: 273, Heft: 4, Pages: 684-693
ISSN:1528-1140
DOI:10.1097/SLA.0000000000004425
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1097/SLA.0000000000004425
Verlag, lizenzpflichtig, Volltext: https://journals.lww.com/annalsofsurgery/Fulltext/2021/04000/Machine_Learning_for_Surgical_Phase_Recognition__A.11.aspx
Volltext
Verfasserangaben:Carly R. Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W. Schmidt, Sandy Engelhardt, Daniel A. Hashimoto, Hannes G. Kenngott, Sebastian Bodenstedt, Stefanie Speidel, Beat P. Müller-Stich, Felix Nickel

MARC

LEADER 00000caa a2200000 c 4500
001 1762900130
003 DE-627
005 20240414193235.0
007 cr uuu---uuuuu
008 210714s2021 xx |||||o 00| ||eng c
024 7 |a 10.1097/SLA.0000000000004425  |2 doi 
035 |a (DE-627)1762900130 
035 |a (DE-599)KXP1762900130 
035 |a (OCoLC)1341418393 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Garrow, Carly R.  |e VerfasserIn  |0 (DE-588)1100724990  |0 (DE-627)859520196  |0 (DE-576)469771925  |4 aut 
245 1 0 |a Machine learning for surgical phase recognition  |b a systematic review  |c Carly R. Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W. Schmidt, Sandy Engelhardt, Daniel A. Hashimoto, Hannes G. Kenngott, Sebastian Bodenstedt, Stefanie Speidel, Beat P. Müller-Stich, Felix Nickel 
264 1 |c April 2021 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.07.2021 
520 |a Objective: To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background: Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods: A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results: A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions: ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. 
700 1 |a Kowalewski, Karl-Friedrich  |d 1989-  |e VerfasserIn  |0 (DE-588)1100724192  |0 (DE-627)859518825  |0 (DE-576)469770740  |4 aut 
700 1 |a Li, Linhong  |e VerfasserIn  |4 aut 
700 1 |a Wagner, Martin  |d 1988-  |e VerfasserIn  |0 (DE-588)1060231980  |0 (DE-627)799324337  |0 (DE-576)416324282  |4 aut 
700 1 |a Schmidt, Mona Wanda  |d 1994-  |e VerfasserIn  |0 (DE-588)1128102269  |0 (DE-627)882387626  |0 (DE-576)485693429  |4 aut 
700 1 |a Engelhardt, Sandy  |d 1987-  |e VerfasserIn  |0 (DE-588)1122674465  |0 (DE-627)876003080  |0 (DE-576)481436049  |4 aut 
700 1 |a Hashimoto, Daniel A.  |e VerfasserIn  |4 aut 
700 1 |a Kenngott, Hannes Götz  |d 1979-  |e VerfasserIn  |0 (DE-588)141469994  |0 (DE-627)62780117X  |0 (DE-576)324023065  |4 aut 
700 1 |a Bodenstedt, Sebastian  |e VerfasserIn  |0 (DE-588)1162865334  |0 (DE-627)1026968836  |0 (DE-576)507640497  |4 aut 
700 1 |a Speidel, Stefanie  |e VerfasserIn  |0 (DE-588)140539794  |0 (DE-627)646561995  |0 (DE-576)337205159  |4 aut 
700 1 |a Müller, Beat P.  |d 1971-  |e VerfasserIn  |0 (DE-588)14066209X  |0 (DE-627)70374819X  |0 (DE-576)317992287  |4 aut 
700 1 |a Nickel, Felix  |d 1982-  |e VerfasserIn  |0 (DE-588)1067980059  |0 (DE-627)819414875  |0 (DE-576)427122619  |4 aut 
773 0 8 |i Enthalten in  |t Annals of surgery  |d [Erscheinungsort nicht ermittelbar] : Lippincott Williams & Wilkins, 1885  |g 273(2021), 4, Seite 684-693  |h Online-Ressource  |w (DE-627)313115222  |w (DE-600)2002200-1  |w (DE-576)090881796  |x 1528-1140  |7 nnas  |a Machine learning for surgical phase recognition a systematic review 
773 1 8 |g volume:273  |g year:2021  |g number:4  |g pages:684-693  |g extent:10  |a Machine learning for surgical phase recognition a systematic review 
856 4 0 |u https://doi.org/10.1097/SLA.0000000000004425  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.lww.com/annalsofsurgery/Fulltext/2021/04000/Machine_Learning_for_Surgical_Phase_Recognition__A.11.aspx  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210714 
993 |a Article 
994 |a 2021 
998 |g 1067980059  |a Nickel, Felix  |m 1067980059:Nickel, Felix  |d 910000  |d 910200  |d 50000  |e 910000PN1067980059  |e 910200PN1067980059  |e 50000PN1067980059  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 11 
998 |g 14066209X  |a Müller, Beat P.  |m 14066209X:Müller, Beat P.  |d 910000  |d 910200  |d 50000  |e 910000PM14066209X  |e 910200PM14066209X  |e 50000PM14066209X  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 10 
998 |g 141469994  |a Kenngott, Hannes Götz  |m 141469994:Kenngott, Hannes Götz  |d 910000  |d 910200  |e 910000PK141469994  |e 910200PK141469994  |k 0/910000/  |k 1/910000/910200/  |p 8 
998 |g 1122674465  |a Engelhardt, Sandy  |m 1122674465:Engelhardt, Sandy  |d 910000  |d 910100  |e 910000PE1122674465  |e 910100PE1122674465  |k 0/910000/  |k 1/910000/910100/  |p 6 
998 |g 1128102269  |a Schmidt, Mona Wanda  |m 1128102269:Schmidt, Mona Wanda  |d 50000  |e 50000PS1128102269  |k 0/50000/  |p 5 
998 |g 1060231980  |a Wagner, Martin  |m 1060231980:Wagner, Martin  |d 910000  |d 910200  |e 910000PW1060231980  |e 910200PW1060231980  |k 0/910000/  |k 1/910000/910200/  |p 4 
998 |g 1100724192  |a Kowalewski, Karl-Friedrich  |m 1100724192:Kowalewski, Karl-Friedrich  |d 60000  |e 60000PK1100724192  |k 0/60000/  |p 2 
999 |a KXP-PPN1762900130  |e 3951168684 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 14.07.2021"],"recId":"1762900130","person":[{"family":"Garrow","role":"aut","given":"Carly R.","display":"Garrow, Carly R."},{"given":"Karl-Friedrich","display":"Kowalewski, Karl-Friedrich","family":"Kowalewski","role":"aut"},{"role":"aut","family":"Li","display":"Li, Linhong","given":"Linhong"},{"role":"aut","family":"Wagner","display":"Wagner, Martin","given":"Martin"},{"given":"Mona Wanda","display":"Schmidt, Mona Wanda","family":"Schmidt","role":"aut"},{"given":"Sandy","display":"Engelhardt, Sandy","family":"Engelhardt","role":"aut"},{"display":"Hashimoto, Daniel A.","given":"Daniel A.","family":"Hashimoto","role":"aut"},{"display":"Kenngott, Hannes Götz","given":"Hannes Götz","role":"aut","family":"Kenngott"},{"display":"Bodenstedt, Sebastian","given":"Sebastian","role":"aut","family":"Bodenstedt"},{"given":"Stefanie","display":"Speidel, Stefanie","family":"Speidel","role":"aut"},{"family":"Müller","role":"aut","display":"Müller, Beat P.","given":"Beat P."},{"given":"Felix","display":"Nickel, Felix","role":"aut","family":"Nickel"}],"language":["eng"],"name":{"displayForm":["Carly R. Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W. Schmidt, Sandy Engelhardt, Daniel A. Hashimoto, Hannes G. Kenngott, Sebastian Bodenstedt, Stefanie Speidel, Beat P. Müller-Stich, Felix Nickel"]},"origin":[{"dateIssuedDisp":"April 2021","dateIssuedKey":"2021"}],"relHost":[{"recId":"313115222","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1528-1140"],"eki":["313115222"],"zdb":["2002200-1"]},"title":[{"title_sort":"Annals of surgery","subtitle":"a monthly review of surgical science and practice","title":"Annals of surgery"}],"origin":[{"publisherPlace":"[Erscheinungsort nicht ermittelbar] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1885","dateIssuedDisp":"1885-","publisher":"Lippincott Williams & Wilkins ; Ovid"}],"part":{"text":"273(2021), 4, Seite 684-693","pages":"684-693","extent":"10","issue":"4","year":"2021","volume":"273"},"language":["eng"],"note":["Gesehen am 26.09.18"],"pubHistory":["1.1885 -"],"disp":"Machine learning for surgical phase recognition a systematic reviewAnnals of surgery","type":{"media":"Online-Ressource","bibl":"periodical"}}],"id":{"eki":["1762900130"],"doi":["10.1097/SLA.0000000000004425"]},"physDesc":[{"extent":"10 S."}],"title":[{"title_sort":"Machine learning for surgical phase recognition","title":"Machine learning for surgical phase recognition","subtitle":"a systematic review"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a GARROWCARLMACHINELEA2021