Incorporating kidney disease measures into cardiovascular risk prediction: development and validation in 9 million adults from 72 datasets

Background - Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Matsushita, Kunihiro (Author) , Jassal, Simerjot K (Author) , Sang, Yingying (Author) , Ballew, Shoshana H (Author) , Grams, Morgan E (Author) , Surapaneni, Aditya (Author) , Arnlov, Johan (Author) , Bansal, Nisha (Author) , Bozic, Milica (Author) , Brenner, Hermann (Author) , Brunskill, Nigel J (Author) , Chang, Alex R (Author) , Chinnadurai, Rajkumar (Author) , Cirillo, Massimo (Author) , Correa, Adolfo (Author) , Ebert, Natalie (Author) , Eckardt, Kai-Uwe (Author) , Gansevoort, Ron T (Author) , Gutierrez, Orlando (Author) , Hadaegh, Farzad (Author) , He, Jiang (Author) , Hwang, Shih-Jen (Author) , Jafar, Tazeen H (Author) , Kayama, Takamasa (Author) , Kovesdy, Csaba P (Author) , Landman, Gijs W (Author) , Levey, Andrew S (Author) , Lloyd-Jones, Donald M (Author) , Major, Rupert W. (Author) , Miura, Katsuyuki (Author) , Muntner, Paul (Author) , Nadkarni, Girish N (Author) , Naimark, David MJ (Author) , Nowak, Christoph (Author) , Ohkubo, Takayoshi (Author) , Pena, Michelle J (Author) , Polkinghorne, Kevan R (Author) , Sabanayagam, Charumathi (Author) , Sairenchi, Toshimi (Author) , Schneider, Markus P (Author) , Shalev, Varda (Author) , Shlipak, Michael (Author) , Solbu, Marit D (Author) , Stempniewicz, Nikita (Author) , Tollitt, James (Author) , Valdivielso, José M (Author) , van der Leeuw, Joep (Author) , Wang, Angela Yee-Moon (Author) , Wen, Chi-Pang (Author) , Woodward, Mark (Author) , Yamagishi, Kazumasa (Author) , Yatsuya, Hiroshi (Author) , Zhang, Luxia (Author) , Schaeffner, Elke (Author) , Coresh, Josef (Author)
Format: Article (Journal)
Language:English
Published: 14 October 2020
In: EClinicalMedicine
Year: 2020, Volume: 27, Pages: 1-9
ISSN:2589-5370
DOI:10.1016/j.eclinm.2020.100552
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.eclinm.2020.100552
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589537020302960
Get full text
Author Notes:Kunihiro Matsushita, Simerjot K. Jassal, Yingying Sang, Shoshana H. Ballew, Morgan E. Grams, Aditya Surapaneni, Johan Arnlov, Nisha Bansal, Milica Bozic, Hermann Brenner, Nigel J. Brunskill, Alex R. Chang, Rajkumar Chinnadurai, Massimo Cirillo, Adolfo Correa, Natalie Ebert, Kai-Uwe Eckardt, Ron T. Gansevoort, Orlando Gutierrez, Farzad Hadaegh, Jiang He, Shih-Jen Hwang, Tazeen H. Jafar, Takamasa Kayama, Csaba P. Kovesdy, Gijs W. Landman, Andrew S. Levey, Donald M. Lloyd-Jones, Rupert W. Major, Katsuyuki Miura, Paul Muntner, Girish N. Nadkarni, David MJ Naimark, Christoph Nowak, Takayoshi Ohkubo, Michelle J. Pena, Kevan R. Polkinghorne, Charumathi Sabanayagam, Toshimi Sairenchi, Markus P. Schneider, Varda Shalev, Michael Shlipak, Marit D. Solbu, Nikita Stempniewicz, James Tollitt, José M. Valdivielso, Joep van der Leeuw, Angela Yee-Moon Wang, Chi-Pang Wen, Mark Woodward, Kazumasa Yamagishi, Hiroshi Yatsuya, Luxia Zhang, Elke Schaeffner, Josef Coresh

MARC

LEADER 00000caa a2200000 c 4500
001 1763019535
003 DE-627
005 20230426071043.0
007 cr uuu---uuuuu
008 210716s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eclinm.2020.100552  |2 doi 
035 |a (DE-627)1763019535 
035 |a (DE-599)KXP1763019535 
035 |a (OCoLC)1341419680 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Matsushita, Kunihiro  |e VerfasserIn  |0 (DE-588)1141204401  |0 (DE-627)898961092  |0 (DE-576)365647772  |4 aut 
245 1 0 |a Incorporating kidney disease measures into cardiovascular risk prediction  |b development and validation in 9 million adults from 72 datasets  |c Kunihiro Matsushita, Simerjot K. Jassal, Yingying Sang, Shoshana H. Ballew, Morgan E. Grams, Aditya Surapaneni, Johan Arnlov, Nisha Bansal, Milica Bozic, Hermann Brenner, Nigel J. Brunskill, Alex R. Chang, Rajkumar Chinnadurai, Massimo Cirillo, Adolfo Correa, Natalie Ebert, Kai-Uwe Eckardt, Ron T. Gansevoort, Orlando Gutierrez, Farzad Hadaegh, Jiang He, Shih-Jen Hwang, Tazeen H. Jafar, Takamasa Kayama, Csaba P. Kovesdy, Gijs W. Landman, Andrew S. Levey, Donald M. Lloyd-Jones, Rupert W. Major, Katsuyuki Miura, Paul Muntner, Girish N. Nadkarni, David MJ Naimark, Christoph Nowak, Takayoshi Ohkubo, Michelle J. Pena, Kevan R. Polkinghorne, Charumathi Sabanayagam, Toshimi Sairenchi, Markus P. Schneider, Varda Shalev, Michael Shlipak, Marit D. Solbu, Nikita Stempniewicz, James Tollitt, José M. Valdivielso, Joep van der Leeuw, Angela Yee-Moon Wang, Chi-Pang Wen, Mark Woodward, Kazumasa Yamagishi, Hiroshi Yatsuya, Luxia Zhang, Elke Schaeffner, Josef Coresh 
264 1 |c 14 October 2020 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.07.2021 
520 |a Background - Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures. - Methods - Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch. - Findings - We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018-0.036] and 0.010 [0.007-0.013] and categorical net reclassification improvement 0.080 [0.032-0.127] and 0.056 [0.044-0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89-3.40) in very high-risk CKD (e.g., eGFR 30-44ml/min/1.73m2 with albuminuria ≥30mg/g), 1.86 (1.48-2.44) in high-risk CKD (e.g., eGFR 45-59ml/min/1.73m2 with albuminuria 30-299mg/g), and 1.37 (1.14-1.69) in moderate risk CKD (e.g., eGFR 60-89ml/min/1.73m2 with albuminuria 30-299mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37-1.81), 1.24 (1.10-1.54), and 1.21 (0.98-1.46). - Interpretation - The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available. - Funding - US National Kidney Foundation and the NIDDK. 
650 4 |a cardiovascular disease 
650 4 |a Chronic kidney disease 
650 4 |a meta-analysis 
650 4 |a risk prediction 
700 1 |a Jassal, Simerjot K  |e VerfasserIn  |4 aut 
700 1 |a Sang, Yingying  |e VerfasserIn  |4 aut 
700 1 |a Ballew, Shoshana H  |e VerfasserIn  |4 aut 
700 1 |a Grams, Morgan E  |e VerfasserIn  |4 aut 
700 1 |a Surapaneni, Aditya  |e VerfasserIn  |4 aut 
700 1 |a Arnlov, Johan  |e VerfasserIn  |4 aut 
700 1 |a Bansal, Nisha  |e VerfasserIn  |4 aut 
700 1 |a Bozic, Milica  |e VerfasserIn  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Brunskill, Nigel J  |e VerfasserIn  |4 aut 
700 1 |a Chang, Alex R  |e VerfasserIn  |4 aut 
700 1 |a Chinnadurai, Rajkumar  |e VerfasserIn  |4 aut 
700 1 |a Cirillo, Massimo  |e VerfasserIn  |4 aut 
700 1 |a Correa, Adolfo  |e VerfasserIn  |4 aut 
700 1 |a Ebert, Natalie  |e VerfasserIn  |4 aut 
700 1 |a Eckardt, Kai-Uwe  |e VerfasserIn  |4 aut 
700 1 |a Gansevoort, Ron T  |e VerfasserIn  |4 aut 
700 1 |a Gutierrez, Orlando  |e VerfasserIn  |4 aut 
700 1 |a Hadaegh, Farzad  |e VerfasserIn  |4 aut 
700 1 |a He, Jiang  |e VerfasserIn  |4 aut 
700 1 |a Hwang, Shih-Jen  |e VerfasserIn  |4 aut 
700 1 |a Jafar, Tazeen H  |e VerfasserIn  |4 aut 
700 1 |a Kayama, Takamasa  |e VerfasserIn  |4 aut 
700 1 |a Kovesdy, Csaba P  |e VerfasserIn  |4 aut 
700 1 |a Landman, Gijs W  |e VerfasserIn  |4 aut 
700 1 |a Levey, Andrew S  |e VerfasserIn  |4 aut 
700 1 |a Lloyd-Jones, Donald M  |e VerfasserIn  |4 aut 
700 1 |a Major, Rupert W.  |e VerfasserIn  |4 aut 
700 1 |a Miura, Katsuyuki  |e VerfasserIn  |4 aut 
700 1 |a Muntner, Paul  |e VerfasserIn  |4 aut 
700 1 |a Nadkarni, Girish N  |e VerfasserIn  |4 aut 
700 1 |a Naimark, David MJ  |e VerfasserIn  |4 aut 
700 1 |a Nowak, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Ohkubo, Takayoshi  |e VerfasserIn  |4 aut 
700 1 |a Pena, Michelle J  |e VerfasserIn  |4 aut 
700 1 |a Polkinghorne, Kevan R  |e VerfasserIn  |4 aut 
700 1 |a Sabanayagam, Charumathi  |e VerfasserIn  |4 aut 
700 1 |a Sairenchi, Toshimi  |e VerfasserIn  |4 aut 
700 1 |a Schneider, Markus P  |e VerfasserIn  |4 aut 
700 1 |a Shalev, Varda  |e VerfasserIn  |4 aut 
700 1 |a Shlipak, Michael  |e VerfasserIn  |4 aut 
700 1 |a Solbu, Marit D  |e VerfasserIn  |4 aut 
700 1 |a Stempniewicz, Nikita  |e VerfasserIn  |4 aut 
700 1 |a Tollitt, James  |e VerfasserIn  |4 aut 
700 1 |a Valdivielso, José M  |e VerfasserIn  |4 aut 
700 1 |a van der Leeuw, Joep  |e VerfasserIn  |4 aut 
700 1 |a Wang, Angela Yee-Moon  |e VerfasserIn  |4 aut 
700 1 |a Wen, Chi-Pang  |e VerfasserIn  |4 aut 
700 1 |a Woodward, Mark  |e VerfasserIn  |4 aut 
700 1 |a Yamagishi, Kazumasa  |e VerfasserIn  |4 aut 
700 1 |a Yatsuya, Hiroshi  |e VerfasserIn  |4 aut 
700 1 |a Zhang, Luxia  |e VerfasserIn  |4 aut 
700 1 |a Schaeffner, Elke  |e VerfasserIn  |4 aut 
700 1 |a Coresh, Josef  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t EClinicalMedicine  |d Amsterdam : Elsevier, 2018  |g 27(2020) vom: Okt., Artikel-ID 100552, Seite 1-9  |h Online-Ressource  |w (DE-627)1035271834  |w (DE-600)2946413-4  |w (DE-576)512181683  |x 2589-5370  |7 nnas  |a Incorporating kidney disease measures into cardiovascular risk prediction development and validation in 9 million adults from 72 datasets 
773 1 8 |g volume:27  |g year:2020  |g month:10  |g elocationid:100552  |g pages:1-9  |g extent:9  |a Incorporating kidney disease measures into cardiovascular risk prediction development and validation in 9 million adults from 72 datasets 
856 4 0 |u https://doi.org/10.1016/j.eclinm.2020.100552  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589537020302960  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210716 
993 |a Article 
994 |a 2020 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 10 
999 |a KXP-PPN1763019535  |e 3953554654 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Kunihiro Matsushita, Simerjot K. Jassal, Yingying Sang, Shoshana H. Ballew, Morgan E. Grams, Aditya Surapaneni, Johan Arnlov, Nisha Bansal, Milica Bozic, Hermann Brenner, Nigel J. Brunskill, Alex R. Chang, Rajkumar Chinnadurai, Massimo Cirillo, Adolfo Correa, Natalie Ebert, Kai-Uwe Eckardt, Ron T. Gansevoort, Orlando Gutierrez, Farzad Hadaegh, Jiang He, Shih-Jen Hwang, Tazeen H. Jafar, Takamasa Kayama, Csaba P. Kovesdy, Gijs W. Landman, Andrew S. Levey, Donald M. Lloyd-Jones, Rupert W. Major, Katsuyuki Miura, Paul Muntner, Girish N. Nadkarni, David MJ Naimark, Christoph Nowak, Takayoshi Ohkubo, Michelle J. Pena, Kevan R. Polkinghorne, Charumathi Sabanayagam, Toshimi Sairenchi, Markus P. Schneider, Varda Shalev, Michael Shlipak, Marit D. Solbu, Nikita Stempniewicz, James Tollitt, José M. Valdivielso, Joep van der Leeuw, Angela Yee-Moon Wang, Chi-Pang Wen, Mark Woodward, Kazumasa Yamagishi, Hiroshi Yatsuya, Luxia Zhang, Elke Schaeffner, Josef Coresh"]},"recId":"1763019535","note":["Gesehen am 16.07.2021"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"14 October 2020"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.eclinm.2020.100552"],"eki":["1763019535"]},"language":["eng"],"physDesc":[{"extent":"9 S."}],"person":[{"role":"aut","display":"Matsushita, Kunihiro","family":"Matsushita","given":"Kunihiro"},{"given":"Simerjot K","family":"Jassal","display":"Jassal, Simerjot K","role":"aut"},{"display":"Sang, Yingying","family":"Sang","given":"Yingying","role":"aut"},{"given":"Shoshana H","display":"Ballew, Shoshana H","family":"Ballew","role":"aut"},{"given":"Morgan E","display":"Grams, Morgan E","family":"Grams","role":"aut"},{"given":"Aditya","family":"Surapaneni","display":"Surapaneni, Aditya","role":"aut"},{"role":"aut","display":"Arnlov, Johan","family":"Arnlov","given":"Johan"},{"role":"aut","display":"Bansal, Nisha","family":"Bansal","given":"Nisha"},{"display":"Bozic, Milica","family":"Bozic","given":"Milica","role":"aut"},{"role":"aut","family":"Brenner","display":"Brenner, Hermann","given":"Hermann"},{"family":"Brunskill","display":"Brunskill, Nigel J","given":"Nigel J","role":"aut"},{"family":"Chang","display":"Chang, Alex R","given":"Alex R","role":"aut"},{"given":"Rajkumar","display":"Chinnadurai, Rajkumar","family":"Chinnadurai","role":"aut"},{"given":"Massimo","display":"Cirillo, Massimo","family":"Cirillo","role":"aut"},{"family":"Correa","display":"Correa, Adolfo","given":"Adolfo","role":"aut"},{"given":"Natalie","display":"Ebert, Natalie","family":"Ebert","role":"aut"},{"given":"Kai-Uwe","family":"Eckardt","display":"Eckardt, Kai-Uwe","role":"aut"},{"role":"aut","display":"Gansevoort, Ron T","family":"Gansevoort","given":"Ron T"},{"family":"Gutierrez","display":"Gutierrez, Orlando","given":"Orlando","role":"aut"},{"role":"aut","given":"Farzad","family":"Hadaegh","display":"Hadaegh, Farzad"},{"given":"Jiang","family":"He","display":"He, Jiang","role":"aut"},{"display":"Hwang, Shih-Jen","family":"Hwang","given":"Shih-Jen","role":"aut"},{"given":"Tazeen H","family":"Jafar","display":"Jafar, Tazeen H","role":"aut"},{"display":"Kayama, Takamasa","family":"Kayama","given":"Takamasa","role":"aut"},{"family":"Kovesdy","display":"Kovesdy, Csaba P","given":"Csaba P","role":"aut"},{"given":"Gijs W","display":"Landman, Gijs W","family":"Landman","role":"aut"},{"role":"aut","given":"Andrew S","family":"Levey","display":"Levey, Andrew S"},{"family":"Lloyd-Jones","display":"Lloyd-Jones, Donald M","given":"Donald M","role":"aut"},{"family":"Major","display":"Major, Rupert W.","given":"Rupert W.","role":"aut"},{"role":"aut","display":"Miura, Katsuyuki","family":"Miura","given":"Katsuyuki"},{"role":"aut","display":"Muntner, Paul","family":"Muntner","given":"Paul"},{"role":"aut","given":"Girish N","display":"Nadkarni, Girish N","family":"Nadkarni"},{"role":"aut","family":"Naimark","display":"Naimark, David MJ","given":"David MJ"},{"given":"Christoph","display":"Nowak, Christoph","family":"Nowak","role":"aut"},{"role":"aut","given":"Takayoshi","family":"Ohkubo","display":"Ohkubo, Takayoshi"},{"given":"Michelle J","display":"Pena, Michelle J","family":"Pena","role":"aut"},{"role":"aut","given":"Kevan R","display":"Polkinghorne, Kevan R","family":"Polkinghorne"},{"given":"Charumathi","display":"Sabanayagam, Charumathi","family":"Sabanayagam","role":"aut"},{"family":"Sairenchi","display":"Sairenchi, Toshimi","given":"Toshimi","role":"aut"},{"given":"Markus P","display":"Schneider, Markus P","family":"Schneider","role":"aut"},{"given":"Varda","display":"Shalev, Varda","family":"Shalev","role":"aut"},{"display":"Shlipak, Michael","family":"Shlipak","given":"Michael","role":"aut"},{"given":"Marit D","family":"Solbu","display":"Solbu, Marit D","role":"aut"},{"display":"Stempniewicz, Nikita","family":"Stempniewicz","given":"Nikita","role":"aut"},{"role":"aut","family":"Tollitt","display":"Tollitt, James","given":"James"},{"role":"aut","family":"Valdivielso","display":"Valdivielso, José M","given":"José M"},{"role":"aut","family":"van der Leeuw","display":"van der Leeuw, Joep","given":"Joep"},{"role":"aut","given":"Angela Yee-Moon","family":"Wang","display":"Wang, Angela Yee-Moon"},{"role":"aut","family":"Wen","display":"Wen, Chi-Pang","given":"Chi-Pang"},{"given":"Mark","family":"Woodward","display":"Woodward, Mark","role":"aut"},{"role":"aut","family":"Yamagishi","display":"Yamagishi, Kazumasa","given":"Kazumasa"},{"role":"aut","family":"Yatsuya","display":"Yatsuya, Hiroshi","given":"Hiroshi"},{"given":"Luxia","family":"Zhang","display":"Zhang, Luxia","role":"aut"},{"family":"Schaeffner","display":"Schaeffner, Elke","given":"Elke","role":"aut"},{"role":"aut","given":"Josef","display":"Coresh, Josef","family":"Coresh"}],"title":[{"subtitle":"development and validation in 9 million adults from 72 datasets","title":"Incorporating kidney disease measures into cardiovascular risk prediction","title_sort":"Incorporating kidney disease measures into cardiovascular risk prediction"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"EClinicalMedicine","title":"EClinicalMedicine"}],"part":{"pages":"1-9","text":"27(2020) vom: Okt., Artikel-ID 100552, Seite 1-9","year":"2020","extent":"9","volume":"27"},"origin":[{"dateIssuedDisp":"[2018]-","publisherPlace":"Amsterdam","publisher":"Elsevier"}],"language":["eng"],"id":{"issn":["2589-5370"],"zdb":["2946413-4"],"eki":["1035271834"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1035271834","pubHistory":["Volume 1 (July 2018)-"],"note":["Gesehen am 28.05.2020"],"disp":"Incorporating kidney disease measures into cardiovascular risk prediction development and validation in 9 million adults from 72 datasetsEClinicalMedicine"}]} 
SRT |a MATSUSHITAINCORPORAT1420