Deep learning for biomedical photoacoustic imaging: a review

Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gröhl, Janek (VerfasserIn) , Schellenberg, Melanie (VerfasserIn) , Dreher, Kris (VerfasserIn) , Maier-Hein, Lena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 February 2021
In: Photoacoustics
Year: 2021, Jahrgang: 22, Pages: 1-15
ISSN:2213-5979
DOI:10.1016/j.pacs.2021.100241
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.pacs.2021.100241
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2213597921000033
Volltext
Verfasserangaben:Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein

MARC

LEADER 00000caa a2200000 c 4500
001 1764780000
003 DE-627
005 20220820024531.0
007 cr uuu---uuuuu
008 210728s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.pacs.2021.100241  |2 doi 
035 |a (DE-627)1764780000 
035 |a (DE-599)KXP1764780000 
035 |a (OCoLC)1341420020 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Gröhl, Janek  |d 1991-  |e VerfasserIn  |0 (DE-588)1197628673  |0 (DE-627)1679293109  |4 aut 
245 1 0 |a Deep learning for biomedical photoacoustic imaging  |b a review  |c Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein 
264 1 |c 2 February 2021 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.07.2021 
520 |a Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability. 
650 4 |a Deep learning 
650 4 |a Image reconstruction 
650 4 |a Optoacoustic imaging 
650 4 |a Photoacoustic imaging 
650 4 |a Photoacoustic tomography 
650 4 |a Signal quantification 
700 1 |a Schellenberg, Melanie  |d 1994-  |e VerfasserIn  |0 (DE-588)1237779464  |0 (DE-627)176477745X  |4 aut 
700 1 |a Dreher, Kris  |e VerfasserIn  |0 (DE-588)1237780837  |0 (DE-627)176477969X  |4 aut 
700 1 |a Maier-Hein, Lena  |d 1980-  |e VerfasserIn  |0 (DE-588)1075029252  |0 (DE-627)832869899  |0 (DE-576)190090804  |4 aut 
773 0 8 |i Enthalten in  |t Photoacoustics  |d Amsterdam [u.a.] : Elsevier, 2013  |g 22(2021) vom: Juni, Artikel-ID 100241, Seite 1-15  |h Online-Ressource  |w (DE-627)746705697  |w (DE-600)2716706-9  |w (DE-576)382628608  |x 2213-5979  |7 nnas  |a Deep learning for biomedical photoacoustic imaging a review 
773 1 8 |g volume:22  |g year:2021  |g month:06  |g elocationid:100241  |g pages:1-15  |g extent:15  |a Deep learning for biomedical photoacoustic imaging a review 
856 4 0 |u https://doi.org/10.1016/j.pacs.2021.100241  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2213597921000033  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210728 
993 |a Article 
994 |a 2021 
998 |g 1075029252  |a Maier-Hein, Lena  |m 1075029252:Maier-Hein, Lena  |d 50000  |e 50000PM1075029252  |k 0/50000/  |p 4  |y j 
998 |g 1237780837  |a Dreher, Kris  |m 1237780837:Dreher, Kris  |d 130000  |e 130000PD1237780837  |k 0/130000/  |p 3 
998 |g 1237779464  |a Schellenberg, Melanie  |m 1237779464:Schellenberg, Melanie  |d 110000  |e 110000PS1237779464  |k 0/110000/  |p 2 
998 |g 1197628673  |a Gröhl, Janek  |m 1197628673:Gröhl, Janek  |d 50000  |e 50000PG1197628673  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1764780000  |e 3958319149 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1764780000","physDesc":[{"extent":"15 S."}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2 February 2021"}],"person":[{"display":"Gröhl, Janek","given":"Janek","role":"aut","family":"Gröhl"},{"display":"Schellenberg, Melanie","given":"Melanie","role":"aut","family":"Schellenberg"},{"display":"Dreher, Kris","role":"aut","given":"Kris","family":"Dreher"},{"family":"Maier-Hein","role":"aut","given":"Lena","display":"Maier-Hein, Lena"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"746705697","disp":"Deep learning for biomedical photoacoustic imaging a reviewPhotoacoustics","pubHistory":["1.2013 -"],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisher":"Elsevier"}],"note":["Gesehen am 11.08.20"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"pages":"1-15","year":"2021","text":"22(2021) vom: Juni, Artikel-ID 100241, Seite 1-15","volume":"22","extent":"15"},"title":[{"title_sort":"Photoacoustics","title":"Photoacoustics"}],"id":{"zdb":["2716706-9"],"eki":["746705697"],"issn":["2213-5979"]}}],"title":[{"subtitle":"a review","title":"Deep learning for biomedical photoacoustic imaging","title_sort":"Deep learning for biomedical photoacoustic imaging"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 28.07.2021"],"name":{"displayForm":["Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein"]},"id":{"doi":["10.1016/j.pacs.2021.100241"],"eki":["1764780000"]}} 
SRT |a GROEHLJANEDEEPLEARNI2202