Deep learning for biomedical photoacoustic imaging: a review
Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters fr...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2 February 2021
|
| In: |
Photoacoustics
Year: 2021, Jahrgang: 22, Pages: 1-15 |
| ISSN: | 2213-5979 |
| DOI: | 10.1016/j.pacs.2021.100241 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.pacs.2021.100241 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2213597921000033 |
| Verfasserangaben: | Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1764780000 | ||
| 003 | DE-627 | ||
| 005 | 20220820024531.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210728s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.pacs.2021.100241 |2 doi | |
| 035 | |a (DE-627)1764780000 | ||
| 035 | |a (DE-599)KXP1764780000 | ||
| 035 | |a (OCoLC)1341420020 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Gröhl, Janek |d 1991- |e VerfasserIn |0 (DE-588)1197628673 |0 (DE-627)1679293109 |4 aut | |
| 245 | 1 | 0 | |a Deep learning for biomedical photoacoustic imaging |b a review |c Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein |
| 264 | 1 | |c 2 February 2021 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.07.2021 | ||
| 520 | |a Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability. | ||
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a Image reconstruction | |
| 650 | 4 | |a Optoacoustic imaging | |
| 650 | 4 | |a Photoacoustic imaging | |
| 650 | 4 | |a Photoacoustic tomography | |
| 650 | 4 | |a Signal quantification | |
| 700 | 1 | |a Schellenberg, Melanie |d 1994- |e VerfasserIn |0 (DE-588)1237779464 |0 (DE-627)176477745X |4 aut | |
| 700 | 1 | |a Dreher, Kris |e VerfasserIn |0 (DE-588)1237780837 |0 (DE-627)176477969X |4 aut | |
| 700 | 1 | |a Maier-Hein, Lena |d 1980- |e VerfasserIn |0 (DE-588)1075029252 |0 (DE-627)832869899 |0 (DE-576)190090804 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Photoacoustics |d Amsterdam [u.a.] : Elsevier, 2013 |g 22(2021) vom: Juni, Artikel-ID 100241, Seite 1-15 |h Online-Ressource |w (DE-627)746705697 |w (DE-600)2716706-9 |w (DE-576)382628608 |x 2213-5979 |7 nnas |a Deep learning for biomedical photoacoustic imaging a review |
| 773 | 1 | 8 | |g volume:22 |g year:2021 |g month:06 |g elocationid:100241 |g pages:1-15 |g extent:15 |a Deep learning for biomedical photoacoustic imaging a review |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.pacs.2021.100241 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S2213597921000033 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210728 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1075029252 |a Maier-Hein, Lena |m 1075029252:Maier-Hein, Lena |d 50000 |e 50000PM1075029252 |k 0/50000/ |p 4 |y j | ||
| 998 | |g 1237780837 |a Dreher, Kris |m 1237780837:Dreher, Kris |d 130000 |e 130000PD1237780837 |k 0/130000/ |p 3 | ||
| 998 | |g 1237779464 |a Schellenberg, Melanie |m 1237779464:Schellenberg, Melanie |d 110000 |e 110000PS1237779464 |k 0/110000/ |p 2 | ||
| 998 | |g 1197628673 |a Gröhl, Janek |m 1197628673:Gröhl, Janek |d 50000 |e 50000PG1197628673 |k 0/50000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1764780000 |e 3958319149 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1764780000","physDesc":[{"extent":"15 S."}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2 February 2021"}],"person":[{"display":"Gröhl, Janek","given":"Janek","role":"aut","family":"Gröhl"},{"display":"Schellenberg, Melanie","given":"Melanie","role":"aut","family":"Schellenberg"},{"display":"Dreher, Kris","role":"aut","given":"Kris","family":"Dreher"},{"family":"Maier-Hein","role":"aut","given":"Lena","display":"Maier-Hein, Lena"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"746705697","disp":"Deep learning for biomedical photoacoustic imaging a reviewPhotoacoustics","pubHistory":["1.2013 -"],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisher":"Elsevier"}],"note":["Gesehen am 11.08.20"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"pages":"1-15","year":"2021","text":"22(2021) vom: Juni, Artikel-ID 100241, Seite 1-15","volume":"22","extent":"15"},"title":[{"title_sort":"Photoacoustics","title":"Photoacoustics"}],"id":{"zdb":["2716706-9"],"eki":["746705697"],"issn":["2213-5979"]}}],"title":[{"subtitle":"a review","title":"Deep learning for biomedical photoacoustic imaging","title_sort":"Deep learning for biomedical photoacoustic imaging"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 28.07.2021"],"name":{"displayForm":["Janek Gröhl, Melanie Schellenberg, Kris Dreher, Lena Maier-Hein"]},"id":{"doi":["10.1016/j.pacs.2021.100241"],"eki":["1764780000"]}} | ||
| SRT | |a GROEHLJANEDEEPLEARNI2202 | ||