A subcell-enriched Galerkin method for advection problems

In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming finite element discretization via discontinuous degrees of freedom, allows to subdivide select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rupp, Andreas (VerfasserIn) , Hauck, Moritz (VerfasserIn) , Aizinger, Vadym (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 April 2021
In: Computers and mathematics with applications
Year: 2021, Jahrgang: 93, Pages: 120-129
ISSN:1873-7668
DOI:10.1016/j.camwa.2021.04.010
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.camwa.2021.04.010
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0898122121001425
Volltext
Verfasserangaben:Andreas Rupp, Moritz Hauck, Vadym Aizinger
Beschreibung
Zusammenfassung:In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming finite element discretization via discontinuous degrees of freedom, allows to subdivide selected (e.g. troubled) mesh cells in a non-conforming fashion and to use further discontinuous enrichment on this finer submesh. We prove stability and sharp a priori error estimates for a linear advection equation by using a specially tailored projection and conducting some parts of a standard convergence analysis for both meshes. By allowing an arbitrary degree of enrichment on both, the coarse and the fine mesh (also including the case of no enrichment), our analysis technique is very general in the sense that our results cover the range from the standard continuous finite element method to the standard discontinuous Galerkin (DG) method with (or without) local subcell enrichment. Numerical experiments confirm our analytical results and indicate good robustness of the proposed method.
Beschreibung:Gesehen am 29.07.2021
Beschreibung:Online Resource
ISSN:1873-7668
DOI:10.1016/j.camwa.2021.04.010