A subcell-enriched Galerkin method for advection problems

In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming finite element discretization via discontinuous degrees of freedom, allows to subdivide select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rupp, Andreas (VerfasserIn) , Hauck, Moritz (VerfasserIn) , Aizinger, Vadym (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 April 2021
In: Computers and mathematics with applications
Year: 2021, Jahrgang: 93, Pages: 120-129
ISSN:1873-7668
DOI:10.1016/j.camwa.2021.04.010
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.camwa.2021.04.010
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0898122121001425
Volltext
Verfasserangaben:Andreas Rupp, Moritz Hauck, Vadym Aizinger

MARC

LEADER 00000caa a2200000 c 4500
001 1764919882
003 DE-627
005 20220820025059.0
007 cr uuu---uuuuu
008 210729s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.camwa.2021.04.010  |2 doi 
035 |a (DE-627)1764919882 
035 |a (DE-599)KXP1764919882 
035 |a (OCoLC)1341419906 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
245 1 2 |a A subcell-enriched Galerkin method for advection problems  |c Andreas Rupp, Moritz Hauck, Vadym Aizinger 
264 1 |c 22 April 2021 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.07.2021 
520 |a In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming finite element discretization via discontinuous degrees of freedom, allows to subdivide selected (e.g. troubled) mesh cells in a non-conforming fashion and to use further discontinuous enrichment on this finer submesh. We prove stability and sharp a priori error estimates for a linear advection equation by using a specially tailored projection and conducting some parts of a standard convergence analysis for both meshes. By allowing an arbitrary degree of enrichment on both, the coarse and the fine mesh (also including the case of no enrichment), our analysis technique is very general in the sense that our results cover the range from the standard continuous finite element method to the standard discontinuous Galerkin (DG) method with (or without) local subcell enrichment. Numerical experiments confirm our analytical results and indicate good robustness of the proposed method. 
650 4 |a Advection equation 
650 4 |a Arbitrary order finite elements 
650 4 |a Discontinuous Galerkin method 
650 4 |a Enriched Galerkin method 
650 4 |a Hyperbolic equation 
650 4 |a Subcell enrichment 
700 1 |a Hauck, Moritz  |e VerfasserIn  |0 (DE-588)1212868064  |0 (DE-627)1702910261  |4 aut 
700 1 |a Aizinger, Vadym  |d 1971-  |e VerfasserIn  |0 (DE-588)1081020148  |0 (DE-627)845526235  |0 (DE-576)453892337  |4 aut 
773 0 8 |i Enthalten in  |t Computers and mathematics with applications  |d Amsterdam [u.a.] : Elsevier Science, 1975  |g 93(2021), Seite 120-129  |h Online-Ressource  |w (DE-627)320435121  |w (DE-600)2004251-6  |w (DE-576)259271225  |x 1873-7668  |7 nnas  |a A subcell-enriched Galerkin method for advection problems 
773 1 8 |g volume:93  |g year:2021  |g pages:120-129  |g extent:10  |a A subcell-enriched Galerkin method for advection problems 
856 4 0 |u https://doi.org/10.1016/j.camwa.2021.04.010  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0898122121001425  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210729 
993 |a Article 
994 |a 2021 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 700000  |d 708000  |e 700000PR1191198812  |e 708000PR1191198812  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1764919882  |e 3958499430 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Andreas Rupp, Moritz Hauck, Vadym Aizinger"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"22 April 2021"}],"id":{"doi":["10.1016/j.camwa.2021.04.010"],"eki":["1764919882"]},"physDesc":[{"extent":"10 S."}],"relHost":[{"title":[{"title_sort":"Computers and mathematics with applications","subtitle":"an international journal","title":"Computers and mathematics with applications"}],"pubHistory":["1.1975 -"],"part":{"extent":"10","volume":"93","text":"93(2021), Seite 120-129","pages":"120-129","year":"2021"},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.08.24"],"disp":"A subcell-enriched Galerkin method for advection problemsComputers and mathematics with applications","language":["eng"],"recId":"320435121","origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"1975-","dateIssuedKey":"1975","publisher":"Elsevier Science"}],"id":{"eki":["320435121"],"zdb":["2004251-6"],"issn":["1873-7668"]},"physDesc":[{"extent":"Online-Ressource"}]}],"person":[{"family":"Rupp","given":"Andreas","display":"Rupp, Andreas","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Moritz","family":"Hauck","role":"aut","display":"Hauck, Moritz","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Aizinger, Vadym","given":"Vadym","family":"Aizinger"}],"title":[{"title_sort":"subcell-enriched Galerkin method for advection problems","title":"A subcell-enriched Galerkin method for advection problems"}],"note":["Gesehen am 29.07.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1764919882"} 
SRT |a RUPPANDREASUBCELLENR2220