M3C2-EP: pushing the limits of 3D topographic point cloud change detection by error propagation

The analysis of topographic time series is often based on bitemporal change detection and quantification. For 3D point clouds, acquired using laser scanning or photogrammetry, random and systematic noise has to be separated from the signal of surface change by determining the minimum detectable chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winiwarter, Lukas (VerfasserIn) , Anders, Katharina (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 June 2021
In: ISPRS journal of photogrammetry and remote sensing
Year: 2021, Jahrgang: 178, Pages: 240-258
ISSN:0924-2716
DOI:10.1016/j.isprsjprs.2021.06.011
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isprsjprs.2021.06.011
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0924271621001696
Volltext
Verfasserangaben:Lukas Winiwarter, Katharina Anders, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1766114636
003 DE-627
005 20220820033014.0
007 cr uuu---uuuuu
008 210811s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isprsjprs.2021.06.011  |2 doi 
035 |a (DE-627)1766114636 
035 |a (DE-599)KXP1766114636 
035 |a (OCoLC)1341420538 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Winiwarter, Lukas  |d 1994-  |e VerfasserIn  |0 (DE-588)1198882808  |0 (DE-627)1681036118  |4 aut 
245 1 0 |a M3C2-EP  |b pushing the limits of 3D topographic point cloud change detection by error propagation  |c Lukas Winiwarter, Katharina Anders, Bernhard Höfle 
246 3 3 |a M three C two-EP 
264 1 |c 28 June 2021 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.08.2021 
520 |a The analysis of topographic time series is often based on bitemporal change detection and quantification. For 3D point clouds, acquired using laser scanning or photogrammetry, random and systematic noise has to be separated from the signal of surface change by determining the minimum detectable change. To analyse geomorphic change in point cloud data, the multiscale model-to-model cloud comparison (M3C2) approach is commonly applied, which provides a statistical significance test. This test assumes planar surfaces and a uniform registration error. For natural surfaces, the planarity assumption does not necessarily apply, in which cases the value of minimal detectable change (Level of Detection) is overestimated. To overcome these limitations, we quantify an uncertainty information for each 3D point by propagating the uncertainty of the measurements themselves and of the alignment uncertainty to the 3D points. This allows the calculation of 3D covariance information for the point cloud, which we use in an extended statistical test for equality of multivariate means. Our method, called M3C2-EP, gives a less biased estimate of the Level of Detection, allowing a more appropriate significance threshold in typical cases. We verify our method in two simulated scenarios, and apply it to a time series of terrestrial laser scans of a rock glacier at two different timespans of three weeks and one year. Over the three-week period, we detect significant change at 12.5% fewer 3D locations, while quantifying additional 25.2% of change volume, when compared to the reference method of M3C2. Compared with manual assessment, M3C2-EP achieves a specificity of 0.97, where M3C2 reaches 0.86 for the one-year timespan, while sensitivity drops from 0.72 for M3C2 to 0.60 for M3C2-EP. Lower Levels of Detection enable the analysis of high-frequency monitoring data, where usually less change has occurred between successive scans, and where change is small compared to local roughness. Our method further allows the combination of data from multiple scan positions or data sources with different levels of uncertainty. The combination using error propagation ensures that every dataset is used to its full potential. 
650 4 |a Geomorphic Monitoring 
650 4 |a Level of Detection 
650 4 |a Rock Glacier 
650 4 |a Signal-Noise-Separation 
650 4 |a Terrestrial Laser Scanning 
650 4 |a Wald-Test 
700 1 |a Anders, Katharina  |d 1990-  |e VerfasserIn  |0 (DE-588)1128842580  |0 (DE-627)883601109  |0 (DE-576)48610298X  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |a International Society for Photogrammetry and Remote Sensing  |t ISPRS journal of photogrammetry and remote sensing  |d Amsterdam [u.a.] : Elsevier, 1989  |g 178(2021) vom: Aug., Seite 240-258  |h Online-Ressource  |w (DE-627)320504557  |w (DE-600)2012663-3  |w (DE-576)096806567  |x 0924-2716  |7 nnas 
773 1 8 |g volume:178  |g year:2021  |g month:08  |g pages:240-258  |g extent:19  |a M3C2-EP pushing the limits of 3D topographic point cloud change detection by error propagation 
856 4 0 |u https://doi.org/10.1016/j.isprsjprs.2021.06.011  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0924271621001696  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210811 
993 |a Article 
994 |a 2021 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 3  |y j 
998 |g 1128842580  |a Anders, Katharina  |m 1128842580:Anders, Katharina  |d 120000  |d 120700  |e 120000PA1128842580  |e 120700PA1128842580  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1198882808  |a Winiwarter, Lukas  |m 1198882808:Winiwarter, Lukas  |d 120000  |d 120700  |e 120000PW1198882808  |e 120700PW1198882808  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1766114636  |e 3965181793 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1766114636","note":["Gesehen am 11.08.2021"],"name":{"displayForm":["Lukas Winiwarter, Katharina Anders, Bernhard Höfle"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"28 June 2021"}],"titleAlt":[{"title":"M three C two-EP"}],"person":[{"given":"Lukas","family":"Winiwarter","display":"Winiwarter, Lukas","role":"aut"},{"role":"aut","family":"Anders","display":"Anders, Katharina","given":"Katharina"},{"display":"Höfle, Bernhard","family":"Höfle","given":"Bernhard","role":"aut"}],"title":[{"title":"M3C2-EP","subtitle":"pushing the limits of 3D topographic point cloud change detection by error propagation","title_sort":"M3C2-EP"}],"physDesc":[{"extent":"19 S."}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1766114636"],"doi":["10.1016/j.isprsjprs.2021.06.011"]},"relHost":[{"origin":[{"dateIssuedDisp":"1989-","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1989","publisher":"Elsevier"}],"part":{"year":"2021","extent":"19","volume":"178","pages":"240-258","text":"178(2021) vom: Aug., Seite 240-258"},"title":[{"title_sort":"ISPRS journal of photogrammetry and remote sensing","subtitle":"official publication of the International Society for Photogrammetry and Remote Sensing (ISPRS)","title":"ISPRS journal of photogrammetry and remote sensing"}],"physDesc":[{"extent":"Online-Ressource"}],"titleAlt":[{"title":"Journal of photogrammetry and remote sensing"}],"disp":"International Society for Photogrammetry and Remote SensingISPRS journal of photogrammetry and remote sensing","note":["Gesehen am 03.05.07"],"pubHistory":["44.1989/90 - 66.2011; Vol. 67.2012 -"],"recId":"320504557","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"corporate":[{"role":"aut","display":"International Society for Photogrammetry and Remote Sensing"}],"id":{"eki":["320504557"],"zdb":["2012663-3"],"issn":["0924-2716"]}}]} 
SRT |a WINIWARTERM3C2EP2820