Long-term cancer survival prediction using multimodal deep learning

The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical,...

Full description

Saved in:
Bibliographic Details
Main Authors: Vale Silva, Luis A. (Author) , Rohr, Karl (Author)
Format: Article (Journal)
Language:English
Published: 29 June 2021
In: Scientific reports
Year: 2021, Volume: 11, Pages: 1-12
ISSN:2045-2322
DOI:10.1038/s41598-021-92799-4
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-021-92799-4
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-021-92799-4
Get full text
Author Notes:Luís A. Vale-Silva & Karl Rohr

MARC

LEADER 00000caa a2200000 c 4500
001 1766521630
003 DE-627
005 20230427034915.0
007 cr uuu---uuuuu
008 210812s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-021-92799-4  |2 doi 
035 |a (DE-627)1766521630 
035 |a (DE-599)KXP1766521630 
035 |a (OCoLC)1341420491 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vale Silva, Luis A.  |e VerfasserIn  |0 (DE-588)1179957113  |0 (DE-627)1067566864  |0 (DE-576)51842054X  |4 aut 
245 1 0 |a Long-term cancer survival prediction using multimodal deep learning  |c Luís A. Vale-Silva & Karl Rohr 
264 1 |c 29 June 2021 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.08.2021 
520 |a The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical, imaging, and different high-dimensional omics data modalities. A data fusion layer aggregates the multimodal representations, and a prediction submodel generates conditional survival probabilities for follow-up time intervals spanning several decades. MultiSurv is the first non-linear and non-proportional survival prediction method that leverages multimodal data. In addition, MultiSurv can handle missing data, including single values and complete data modalities. MultiSurv was applied to data from 33 different cancer types and yields accurate pan-cancer patient survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the best results according to different time-dependent metrics. We also generated visualizations of the learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and heterogeneity. 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 11(2021), Artikel-ID 13505, Seite 1-12  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Long-term cancer survival prediction using multimodal deep learning 
773 1 8 |g volume:11  |g year:2021  |g elocationid:13505  |g pages:1-12  |g extent:12  |a Long-term cancer survival prediction using multimodal deep learning 
856 4 0 |u https://doi.org/10.1038/s41598-021-92799-4  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-021-92799-4  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20210812 
993 |a Article 
994 |a 2021 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |e 160000PR137474466  |e 160100PR137474466  |k 0/160000/  |k 1/160000/160100/  |p 2  |y j 
998 |g 1179957113  |a Vale Silva, Luis A.  |m 1179957113:Vale Silva, Luis A.  |p 1  |x j 
999 |a KXP-PPN1766521630  |e 3966236958 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"12 S."}],"id":{"doi":["10.1038/s41598-021-92799-4"],"eki":["1766521630"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Long-term cancer survival prediction using multimodal deep learning","title":"Long-term cancer survival prediction using multimodal deep learning"}],"relHost":[{"part":{"year":"2021","extent":"12","volume":"11","text":"11(2021), Artikel-ID 13505, Seite 1-12","pages":"1-12"},"pubHistory":["1, article number 1 (2011)-"],"id":{"issn":["2045-2322"],"zdb":["2615211-3"],"eki":["663366712"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"663366712","origin":[{"dateIssuedDisp":"2011-","publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011","publisherPlace":"[London] ; London"}],"language":["eng"],"title":[{"title":"Scientific reports","title_sort":"Scientific reports"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Long-term cancer survival prediction using multimodal deep learningScientific reports","note":["Gesehen am 12.07.24"]}],"person":[{"given":"Luis A.","family":"Vale Silva","role":"aut","display":"Vale Silva, Luis A."},{"role":"aut","display":"Rohr, Karl","given":"Karl","family":"Rohr"}],"language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"29 June 2021"}],"recId":"1766521630","name":{"displayForm":["Luís A. Vale-Silva & Karl Rohr"]},"note":["Gesehen am 12.08.2021"]} 
SRT |a VALESILVALLONGTERMCA2920