Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings

Computer-assisted reporting (CAR) tools were suggested to improve radiology report quality by context-sensitively recommending key imaging biomarkers. However, studies evaluating machine learning (ML) algorithms on cross-lingual ontological (RadLex) mappings for developing embedded CAR algorithms ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maros, Máté E. (VerfasserIn) , Cho, Chang Gyu (VerfasserIn) , Junge, Andreas Georg (VerfasserIn) , Kämpgen, Benedikt (VerfasserIn) , Saase, Victor (VerfasserIn) , Siegel, Fabian (VerfasserIn) , Trinkmann, Frederik (VerfasserIn) , Ganslandt, Thomas (VerfasserIn) , Groden, Christoph (VerfasserIn) , Wenz, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 09 March 2021
In: Scientific reports
Year: 2021, Jahrgang: 11, Pages: 1-18
ISSN:2045-2322
DOI:10.1038/s41598-021-85016-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-021-85016-9
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-021-85016-9
Volltext
Verfasserangaben:Máté E. Maros, Chang Gyu Cho, Andreas G. Junge, Benedikt Kämpgen, Victor Saase, Fabian Siegel, Frederik Trinkmann, Thomas Ganslandt, Christoph Groden and Holger Wenz

MARC

LEADER 00000caa a2200000 c 4500
001 1766546102
003 DE-627
005 20230427164256.0
007 cr uuu---uuuuu
008 210812s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-021-85016-9  |2 doi 
035 |a (DE-627)1766546102 
035 |a (DE-599)KXP1766546102 
035 |a (OCoLC)1341420477 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Maros, Máté E.  |d 1986-  |e VerfasserIn  |0 (DE-588)1144379407  |0 (DE-627)1004715153  |0 (DE-576)495364827  |4 aut 
245 1 0 |a Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings  |c Máté E. Maros, Chang Gyu Cho, Andreas G. Junge, Benedikt Kämpgen, Victor Saase, Fabian Siegel, Frederik Trinkmann, Thomas Ganslandt, Christoph Groden and Holger Wenz 
264 1 |c 09 March 2021 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.08.2021 
520 |a Computer-assisted reporting (CAR) tools were suggested to improve radiology report quality by context-sensitively recommending key imaging biomarkers. However, studies evaluating machine learning (ML) algorithms on cross-lingual ontological (RadLex) mappings for developing embedded CAR algorithms are lacking. Therefore, we compared ML algorithms developed on human expert-annotated features against those developed on fully automated cross-lingual (German to English) RadLex mappings using 206 CT reports of suspected stroke. Target label was whether the Alberta Stroke Programme Early CT Score (ASPECTS) should have been provided (yes/no:154/52). We focused on probabilistic outputs of ML-algorithms including tree-based methods, elastic net, support vector machines (SVMs) and fastText (linear classifier), which were evaluated in the same 5 × fivefold nested cross-validation framework. This allowed for model stacking and classifier rankings. Performance was evaluated using calibration metrics (AUC, brier score, log loss) and -plots. Contextual ML-based assistance recommending ASPECTS was feasible. SVMs showed the highest accuracies both on human-extracted- (87%) and RadLex features (findings:82.5%; impressions:85.4%). FastText achieved the highest accuracy (89.3%) and AUC (92%) on impressions. Boosted trees fitted on findings had the best calibration profile. Our approach provides guidance for choosing ML classifiers for CAR tools in fully automated and language-agnostic fashion using bag-of-RadLex terms on limited expert-labelled training data. 
700 1 |a Cho, Chang Gyu  |d 1989-  |e VerfasserIn  |0 (DE-588)1238814832  |0 (DE-627)1766536050  |4 aut 
700 1 |a Junge, Andreas Georg  |e VerfasserIn  |0 (DE-588)1238815928  |0 (DE-627)1766537189  |4 aut 
700 1 |a Kämpgen, Benedikt  |e VerfasserIn  |4 aut 
700 1 |a Saase, Victor  |d 1985-  |e VerfasserIn  |0 (DE-588)1214458068  |0 (DE-627)172550457X  |4 aut 
700 1 |a Siegel, Fabian  |d 1979-  |e VerfasserIn  |0 (DE-588)1034567551  |0 (DE-627)745868037  |0 (DE-576)382210514  |4 aut 
700 1 |a Trinkmann, Frederik  |d 1983-  |e VerfasserIn  |0 (DE-588)142731773  |0 (DE-627)704298066  |0 (DE-576)332907406  |4 aut 
700 1 |a Ganslandt, Thomas  |d 1969-  |e VerfasserIn  |0 (DE-588)124367720  |0 (DE-627)08581623X  |0 (DE-576)294139915  |4 aut 
700 1 |a Groden, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Wenz, Holger  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 11(2021), Artikel-ID 5529, Seite 1-18  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings 
773 1 8 |g volume:11  |g year:2021  |g elocationid:5529  |g pages:1-18  |g extent:18  |a Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings 
856 4 0 |u https://doi.org/10.1038/s41598-021-85016-9  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-021-85016-9  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20210812 
993 |a Article 
994 |a 2021 
998 |g 124367720  |a Ganslandt, Thomas  |m 124367720:Ganslandt, Thomas  |d 60000  |e 60000PG124367720  |k 0/60000/  |p 8 
998 |g 142731773  |a Trinkmann, Frederik  |m 142731773:Trinkmann, Frederik  |d 910000  |d 950000  |d 950900  |d 60000  |d 61000  |e 910000PT142731773  |e 950000PT142731773  |e 950900PT142731773  |e 60000PT142731773  |e 61000PT142731773  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |k 0/60000/  |k 1/60000/61000/  |p 7 
998 |g 1034567551  |a Siegel, Fabian  |m 1034567551:Siegel, Fabian  |d 60000  |d 63100  |e 60000PS1034567551  |e 63100PS1034567551  |k 0/60000/  |k 1/60000/63100/  |p 6 
998 |g 1214458068  |a Saase, Victor  |m 1214458068:Saase, Victor  |d 60000  |d 63000  |e 60000PS1214458068  |e 63000PS1214458068  |k 0/60000/  |k 1/60000/63000/  |p 5 
998 |g 1238815928  |a Junge, Andreas Georg  |m 1238815928:Junge, Andreas Georg  |d 60000  |d 63000  |e 60000PJ1238815928  |e 63000PJ1238815928  |k 0/60000/  |k 1/60000/63000/  |p 3 
998 |g 1238814832  |a Cho, Chang Gyu  |m 1238814832:Cho, Chang Gyu  |d 60000  |d 63000  |e 60000PC1238814832  |e 63000PC1238814832  |k 0/60000/  |k 1/60000/63000/  |p 2 
998 |g 1144379407  |a Maros, Máté E.  |m 1144379407:Maros, Máté E.  |d 60000  |d 63000  |e 60000PM1144379407  |e 63000PM1144379407  |k 0/60000/  |k 1/60000/63000/  |p 1  |x j 
999 |a KXP-PPN1766546102  |e 3966298619 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"part":{"extent":"18","pages":"1-18","text":"11(2021), Artikel-ID 5529, Seite 1-18","year":"2021","volume":"11"},"title":[{"title":"Scientific reports","title_sort":"Scientific reports"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"663366712","id":{"issn":["2045-2322"],"zdb":["2615211-3"],"eki":["663366712"]},"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011","publisherPlace":"[London] ; London","dateIssuedDisp":"2011-"}],"disp":"Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappingsScientific reports","language":["eng"],"note":["Gesehen am 12.07.24"],"pubHistory":["1, article number 1 (2011)-"]}],"title":[{"title_sort":"Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings","title":"Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings"}],"physDesc":[{"extent":"18 S."}],"language":["eng"],"note":["Gesehen am 12.08.2021"],"person":[{"given":"Máté E.","family":"Maros","role":"aut","display":"Maros, Máté E."},{"given":"Chang Gyu","family":"Cho","role":"aut","display":"Cho, Chang Gyu"},{"display":"Junge, Andreas Georg","family":"Junge","role":"aut","given":"Andreas Georg"},{"given":"Benedikt","display":"Kämpgen, Benedikt","role":"aut","family":"Kämpgen"},{"family":"Saase","role":"aut","display":"Saase, Victor","given":"Victor"},{"family":"Siegel","role":"aut","display":"Siegel, Fabian","given":"Fabian"},{"display":"Trinkmann, Frederik","role":"aut","family":"Trinkmann","given":"Frederik"},{"given":"Thomas","family":"Ganslandt","role":"aut","display":"Ganslandt, Thomas"},{"given":"Christoph","display":"Groden, Christoph","family":"Groden","role":"aut"},{"family":"Wenz","role":"aut","display":"Wenz, Holger","given":"Holger"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1766546102"],"doi":["10.1038/s41598-021-85016-9"]},"recId":"1766546102","name":{"displayForm":["Máté E. Maros, Chang Gyu Cho, Andreas G. Junge, Benedikt Kämpgen, Victor Saase, Fabian Siegel, Frederik Trinkmann, Thomas Ganslandt, Christoph Groden and Holger Wenz"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"09 March 2021"}]} 
SRT |a MAROSMATEECOMPARATIV0920