Deep learning in pancreatic tissue: identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma

Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kriegsmann, Mark (VerfasserIn) , Kriegsmann, Katharina (VerfasserIn) , Steinbuß, Georg (VerfasserIn) , Zgorzelski, Christiane (VerfasserIn) , Kraft, Anne (VerfasserIn) , Gaida, Matthias (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 May 2021
In: International journal of molecular sciences
Year: 2021, Jahrgang: 22, Heft: 10, Pages: 1-14
ISSN:1422-0067
DOI:10.3390/ijms22105385
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/ijms22105385
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/1422-0067/22/10/5385
Volltext
Verfasserangaben:Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Anne Kraft and Matthias M. Gaida

MARC

LEADER 00000caa a2200000 c 4500
001 1767687214
003 DE-627
005 20230720104123.0
007 cr uuu---uuuuu
008 210823s2021 xx |||||o 00| ||eng c
024 7 |a 10.3390/ijms22105385  |2 doi 
035 |a (DE-627)1767687214 
035 |a (DE-599)KXP1767687214 
035 |a (OCoLC)1341420922 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kriegsmann, Mark  |d 1987-  |e VerfasserIn  |0 (DE-588)103740324X  |0 (DE-627)755668782  |0 (DE-576)39141870X  |4 aut 
245 1 0 |a Deep learning in pancreatic tissue  |b identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma  |c Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Anne Kraft and Matthias M. Gaida 
264 1 |c 20 May 2021 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.08.2021 
520 |a Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research. 
650 4 |a artificial intelligence 
650 4 |a convolutional neuronal networks 
650 4 |a deep learning 
650 4 |a pancreatic cancer 
700 1 |a Kriegsmann, Katharina  |d 1986-  |e VerfasserIn  |0 (DE-588)1049422449  |0 (DE-627)781924006  |0 (DE-576)40339774X  |4 aut 
700 1 |a Steinbuß, Georg  |e VerfasserIn  |0 (DE-588)1213253330  |0 (DE-627)1703730534  |4 aut 
700 1 |a Zgorzelski, Christiane  |e VerfasserIn  |0 (DE-588)1167972317  |0 (DE-627)1031669019  |0 (DE-576)511377622  |4 aut 
700 1 |a Kraft, Anne  |d 1991-  |e VerfasserIn  |0 (DE-588)122575724X  |0 (DE-627)1745654380  |4 aut 
700 1 |a Gaida, Matthias  |d 1982-  |e VerfasserIn  |0 (DE-588)139102620  |0 (DE-627)703207377  |0 (DE-576)309804523  |4 aut 
773 0 8 |i Enthalten in  |t International journal of molecular sciences  |d Basel : Molecular Diversity Preservation International, 2000  |g 22(2021), 10 vom: 20. Mai, Artikel-ID 5385, Seite 1-14  |h Online-Ressource  |w (DE-627)316340715  |w (DE-600)2019364-6  |w (DE-576)281194653  |x 1422-0067  |7 nnas  |a Deep learning in pancreatic tissue identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma 
773 1 8 |g volume:22  |g year:2021  |g number:10  |g day:20  |g month:05  |g elocationid:5385  |g pages:1-14  |g extent:14  |a Deep learning in pancreatic tissue identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma 
856 4 0 |u https://doi.org/10.3390/ijms22105385  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/1422-0067/22/10/5385  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210823 
993 |a Article 
994 |a 2021 
998 |g 139102620  |a Gaida, Matthias  |m 139102620:Gaida, Matthias  |d 50000  |e 50000PG139102620  |k 0/50000/  |p 6  |y j 
998 |g 1167972317  |a Zgorzelski, Christiane  |m 1167972317:Zgorzelski, Christiane  |d 910000  |d 912000  |e 910000PZ1167972317  |e 912000PZ1167972317  |k 0/910000/  |k 1/910000/912000/  |p 4 
998 |g 1213253330  |a Steinbuß, Georg  |m 1213253330:Steinbuß, Georg  |d 910000  |d 910100  |e 910000PS1213253330  |e 910100PS1213253330  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1049422449  |a Kriegsmann, Katharina  |m 1049422449:Kriegsmann, Katharina  |d 910000  |d 910100  |e 910000PK1049422449  |e 910100PK1049422449  |k 0/910000/  |k 1/910000/910100/  |p 2 
998 |g 103740324X  |a Kriegsmann, Mark  |m 103740324X:Kriegsmann, Mark  |d 910000  |d 912000  |d 50000  |e 910000PK103740324X  |e 912000PK103740324X  |e 50000PK103740324X  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1767687214  |e 3970793777 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Kriegsmann, Mark","family":"Kriegsmann","role":"aut","given":"Mark"},{"given":"Katharina","role":"aut","family":"Kriegsmann","display":"Kriegsmann, Katharina"},{"given":"Georg","role":"aut","display":"Steinbuß, Georg","family":"Steinbuß"},{"display":"Zgorzelski, Christiane","family":"Zgorzelski","given":"Christiane","role":"aut"},{"role":"aut","given":"Anne","display":"Kraft, Anne","family":"Kraft"},{"given":"Matthias","role":"aut","display":"Gaida, Matthias","family":"Gaida"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 23.08.2021"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"20 May 2021"}],"title":[{"subtitle":"identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma","title_sort":"Deep learning in pancreatic tissue","title":"Deep learning in pancreatic tissue"}],"language":["eng"],"name":{"displayForm":["Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Anne Kraft and Matthias M. Gaida"]},"physDesc":[{"extent":"14 S."}],"recId":"1767687214","relHost":[{"language":["eng"],"part":{"text":"22(2021), 10 vom: 20. Mai, Artikel-ID 5385, Seite 1-14","pages":"1-14","year":"2021","volume":"22","extent":"14","issue":"10"},"origin":[{"dateIssuedKey":"2000","publisher":"Molecular Diversity Preservation International","dateIssuedDisp":"2000-","publisherPlace":"Basel"}],"note":["Gesehen am 17.09.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"IJMS"}],"title":[{"title_sort":"International journal of molecular sciences","title":"International journal of molecular sciences"}],"disp":"Deep learning in pancreatic tissue identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinomaInternational journal of molecular sciences","id":{"zdb":["2019364-6"],"issn":["1422-0067","1661-6596"],"eki":["316340715"]},"recId":"316340715","pubHistory":["1.2000 -"],"physDesc":[{"extent":"Online-Ressource"}]}],"id":{"eki":["1767687214"],"doi":["10.3390/ijms22105385"]}} 
SRT |a KRIEGSMANNDEEPLEARNI2020