A sequential homotopy method for mathematical programming problems

We propose a sequential homotopy method for the solution of mathematical programming problems formulated in abstract Hilbert spaces under the Guignard constraint qualification. The method is equivalent to performing projected backward Euler timestepping on a projected gradient/antigradient flow of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Potschka, Andreas (Author) , Bock, Hans Georg (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Mathematical programming
Year: 2021, Volume: 187, Issue: 1, Pages: 459-486
ISSN:1436-4646
DOI:10.1007/s10107-020-01488-z
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10107-020-01488-z
Get full text
Author Notes:Andreas Potschka, Hans Georg Bock

MARC

LEADER 00000caa a2200000 c 4500
001 1769520708
003 DE-627
005 20220208214748.0
007 cr uuu---uuuuu
008 210907s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10107-020-01488-z  |2 doi 
035 |a (DE-627)1769520708 
035 |a (DE-599)KXP1769520708 
035 |a (OCoLC)1295679005 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Potschka, Andreas  |d 1980-  |e VerfasserIn  |0 (DE-588)1019443391  |0 (DE-627)685041166  |0 (DE-576)358073995  |4 aut 
245 1 2 |a A sequential homotopy method for mathematical programming problems  |c Andreas Potschka, Hans Georg Bock 
264 1 |c 2021 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published: 23 March 2020 
500 |a Gesehen am 07.09.2021 
520 |a We propose a sequential homotopy method for the solution of mathematical programming problems formulated in abstract Hilbert spaces under the Guignard constraint qualification. The method is equivalent to performing projected backward Euler timestepping on a projected gradient/antigradient flow of the augmented Lagrangian. The projected backward Euler equations can be interpreted as the necessary optimality conditions of a primal-dual proximal regularization of the original problem. The regularized problems are always feasible, satisfy a strong constraint qualification guaranteeing uniqueness of Lagrange multipliers, yield unique primal solutions provided that the stepsize is sufficiently small, and can be solved by a continuation in the stepsize. We show that equilibria of the projected gradient/antigradient flow and critical points of the optimization problem are identical, provide sufficient conditions for the existence of global flow solutions, and show that critical points with emanating descent curves cannot be asymptotically stable equilibria of the projected gradient/antigradient flow, practically eradicating convergence to saddle points and maxima. The sequential homotopy method can be used to globalize any locally convergent optimization method that can be used in a homotopy framework. We demonstrate its efficiency for a class of highly nonlinear and badly conditioned control constrained elliptic optimal control problems with a semismooth Newton approach for the regularized subproblems. 
700 1 |a Bock, Hans Georg  |d 1948-  |e VerfasserIn  |0 (DE-588)1025289927  |0 (DE-627)721988717  |0 (DE-576)370169255  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical programming  |d Berlin : Springer, 1971  |g 187(2021), 1, Seite 459-486  |h Online-Ressource  |w (DE-627)25491179X  |w (DE-600)1463397-8  |w (DE-576)074754874  |x 1436-4646  |7 nnas  |a A sequential homotopy method for mathematical programming problems 
773 1 8 |g volume:187  |g year:2021  |g number:1  |g pages:459-486  |g extent:28  |a A sequential homotopy method for mathematical programming problems 
856 4 0 |u https://doi.org/10.1007/s10107-020-01488-z  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20210907 
993 |a Article 
994 |a 2021 
998 |g 1025289927  |a Bock, Hans Georg  |m 1025289927:Bock, Hans Georg  |d 700000  |d 708000  |e 700000PB1025289927  |e 708000PB1025289927  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 1019443391  |a Potschka, Andreas  |m 1019443391:Potschka, Andreas  |d 110000  |e 110000PP1019443391  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1769520708  |e 3974477535 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Andreas","family":"Potschka","role":"aut","display":"Potschka, Andreas","roleDisplay":"VerfasserIn"},{"given":"Hans Georg","family":"Bock","role":"aut","display":"Bock, Hans Georg","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"sequential homotopy method for mathematical programming problems","title":"A sequential homotopy method for mathematical programming problems"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published: 23 March 2020","Gesehen am 07.09.2021"],"recId":"1769520708","language":["eng"],"name":{"displayForm":["Andreas Potschka, Hans Georg Bock"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"id":{"eki":["1769520708"],"doi":["10.1007/s10107-020-01488-z"]},"physDesc":[{"extent":"28 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["25491179X"],"zdb":["1463397-8"],"issn":["1436-4646"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1971-","publisher":"Springer","dateIssuedKey":"1971"}],"part":{"pages":"459-486","issue":"1","year":"2021","extent":"28","text":"187(2021), 1, Seite 459-486","volume":"187"},"pubHistory":["1.1971 -"],"language":["eng"],"recId":"25491179X","disp":"A sequential homotopy method for mathematical programming problemsMathematical programming","note":["Gesehen am 05.05.2023","Gliedert sich in Ser. A u. Ser. B"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"subtitle":"Series A, Series B ; a publication of the Mathematical Programming Society","title":"Mathematical programming","title_sort":"Mathematical programming"}]}]} 
SRT |a POTSCHKAANSEQUENTIAL2021