Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC

Background Currently, interpretation of prostate MRI is performed qualitatively. Quantitative assessment of the mean apparent diffusion coefficient (mADC) is promising to improve diagnostic accuracy while radiomic machine learning (RML) allows to probe complex parameter spaces to identify the most p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Kevin Sun (VerfasserIn) , Schelb, Patrick (VerfasserIn) , Kohl, Simon (VerfasserIn) , Radtke, Jan Philipp (VerfasserIn) , Wiesenfarth, Manuel (VerfasserIn) , Schimmoller, Lars (VerfasserIn) , Kuder, Tristan Anselm (VerfasserIn) , Stenzinger, Albrecht (VerfasserIn) , Hohenfellner, Markus (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Maier-Hein, Klaus (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 June 2021
In: Magnetic resonance imaging
Year: 2021, Jahrgang: 82, Pages: 9-17
ISSN:1873-5894
DOI:10.1016/j.mri.2021.06.013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.mri.2021.06.013
Verlag, lizenzpflichtig, Volltext: https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1016%2Fj.mri.2021.06.013&DestApp=DOI&SrcAppSID=F4YMMc9jPB5f9dX7ixC&SrcJTitle=MAGNETIC+RESONANCE+IMAGING&DestDOIRegistrantName=Elsevier
Volltext
Verfasserangaben:Kevin Sun Zhang, Patrick Schelb, Simon Kohl, Jan Philipp Radtke, Manuel Wiesenfarth, Lars Schimmoller, Tristan Anselm Kuder, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, Klaus Maier-Hein, David Bonekamp

MARC

LEADER 00000caa a2200000 c 4500
001 176966940X
003 DE-627
005 20240516104148.0
007 cr uuu---uuuuu
008 210908s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.mri.2021.06.013  |2 doi 
035 |a (DE-627)176966940X 
035 |a (DE-599)KXP176966940X 
035 |a (OCoLC)1341421112 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Zhang, Kevin Sun  |e VerfasserIn  |0 (DE-588)1207581461  |0 (DE-627)1694082342  |4 aut 
245 1 0 |a Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC  |c Kevin Sun Zhang, Patrick Schelb, Simon Kohl, Jan Philipp Radtke, Manuel Wiesenfarth, Lars Schimmoller, Tristan Anselm Kuder, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, Klaus Maier-Hein, David Bonekamp 
264 1 |c 18 June 2021 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.09.2021 
520 |a Background Currently, interpretation of prostate MRI is performed qualitatively. Quantitative assessment of the mean apparent diffusion coefficient (mADC) is promising to improve diagnostic accuracy while radiomic machine learning (RML) allows to probe complex parameter spaces to identify the most promising multi-parametric models. We have previously developed quantitative RML and ADC classifiers for prediction of clinically significant prostate cancer (sPC) from prostate MRI, however these have not been combined with radiologist PI-RADS assessment. Purpose To propose and evaluate diagnostic algorithms combining quantitative ADC or RML and qualitative PI-RADS assessment for prediction of sPC. Methods and population The previously published quantitative models (RML and mADC) were utilized to construct four algorithms: 1) Down(ADC) and 2) Down(RML): clinically detected PI-RADS positive prostate lesions (defined as either PIRADS>3 or >4) were downgraded to MRI negative upon negative quantitative assessment; and 3) Up(ADC) and 4) Up(RML): MRI-negative lesions were upgraded to MRI-positive upon positive assessment of quantitative parameters. Analyses were performed at the individual lesion level and the patient level in 133 consecutive patients with suspicion for clinically significant prostate cancer (sPC, International Society of Urological Pathology (ISUP) grade group>2), the test set subcohort of a previously published patient population. McNemar test was used to compare differences in sensitivity, specificity and accuracy. Differences between lesions of different prostate zones were assessed using ANOVA. Reduction in false positive assessments was assessed as ratios. Results Compared to clinical assessment at the PI-RADS>4 cut-off alone, algorithms Down(ADC/RML) improved specificity from 43% to 65% (p = 0.001)/62% (p = 0.003), while sensitivity did not change significantly at 89% compared to 87% (p = 1.0)/89% (unchanged) on the patient level. Reduction of false positive lesions was 50% [26/52] in the PZ and 53% [15/28] in the TZ. Algorithms Up(ADC/RML) led, on a patient basis, to an unfavorable loss of specificity from 43% to 30% (p = 0.039)/32% (p = 0.106), with insignificant increase of sensitivity from 89% to 96%/96% (both p = 1.0). Compared to clinical assessment at the PI-RADS>3 cut-off alone, similar results were observed for Down(ADC) with significantly increased specificity from 2% to 23% (p < 0.001) and unchanged sensitivity on the lesion level; patient level specificity increased only non-significantly. Conclusion Downgrading PI-RADS>3 and > 4 lesions based on quantitative mADC measurements or RML classifiers can increase diagnostic accuracy by enhancing specificity and preserving sensitivity for detection of sPC and reduce false positives. 
650 4 |a active surveillance 
650 4 |a biopsy 
650 4 |a mri 
650 4 |a risk 
650 4 |a system 
650 4 |a values 
700 1 |a Schelb, Patrick  |d 1994-  |e VerfasserIn  |0 (DE-588)1197061495  |0 (DE-627)1678864773  |4 aut 
700 1 |a Kohl, Simon  |e VerfasserIn  |4 aut 
700 1 |a Radtke, Jan Philipp  |d 1985-  |e VerfasserIn  |0 (DE-588)1020328290  |0 (DE-627)688118089  |0 (DE-576)360178170  |4 aut 
700 1 |a Wiesenfarth, Manuel  |e VerfasserIn  |4 aut 
700 1 |a Schimmoller, Lars  |e VerfasserIn  |4 aut 
700 1 |a Kuder, Tristan Anselm  |e VerfasserIn  |0 (DE-588)14203911X  |0 (DE-627)704126338  |0 (DE-576)326749675  |4 aut 
700 1 |a Stenzinger, Albrecht  |e VerfasserIn  |0 (DE-588)139606106  |0 (DE-627)703395238  |0 (DE-576)312432755  |4 aut 
700 1 |a Hohenfellner, Markus  |d 1958-  |e VerfasserIn  |0 (DE-588)133862518  |0 (DE-627)557857988  |0 (DE-576)300155263  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Maier-Hein, Klaus  |e VerfasserIn  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance imaging  |d Amsterdam [u.a.] : Elsevier Science, 1982  |g 82(2021), Seite 9-17  |h Online-Ressource  |w (DE-627)306661160  |w (DE-600)1500646-3  |w (DE-576)081986750  |x 1873-5894  |7 nnas  |a Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC 
773 1 8 |g volume:82  |g year:2021  |g pages:9-17  |g extent:9  |a Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC 
856 4 0 |u https://doi.org/10.1016/j.mri.2021.06.013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1016%2Fj.mri.2021.06.013&DestApp=DOI&SrcAppSID=F4YMMc9jPB5f9dX7ixC&SrcJTitle=MAGNETIC+RESONANCE+IMAGING&DestDOIRegistrantName=Elsevier  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210908 
993 |a Article 
994 |a 2021 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 12  |y j 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 11 
998 |g 133862518  |a Hohenfellner, Markus  |m 133862518:Hohenfellner, Markus  |d 910000  |d 910200  |e 910000PH133862518  |e 910200PH133862518  |k 0/910000/  |k 1/910000/910200/  |p 10 
998 |g 139606106  |a Stenzinger, Albrecht  |m 139606106:Stenzinger, Albrecht  |d 910000  |d 912000  |e 910000PS139606106  |e 912000PS139606106  |k 0/910000/  |k 1/910000/912000/  |p 9 
998 |g 14203911X  |a Kuder, Tristan Anselm  |m 14203911X:Kuder, Tristan Anselm  |d 50000  |e 50000PK14203911X  |k 0/50000/  |p 7 
998 |g 1020328290  |a Radtke, Jan Philipp  |m 1020328290:Radtke, Jan Philipp  |d 50000  |e 50000PR1020328290  |k 0/50000/  |p 4 
998 |g 1197061495  |a Schelb, Patrick  |m 1197061495:Schelb, Patrick  |d 50000  |e 50000PS1197061495  |k 0/50000/  |p 2 
998 |g 1207581461  |a Zhang, Kevin Sun  |m 1207581461:Zhang, Kevin Sun  |d 50000  |e 50000PZ1207581461  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN176966940X  |e 3974835385 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"9 S."}],"recId":"176966940X","origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"18 June 2021"}],"person":[{"display":"Zhang, Kevin Sun","given":"Kevin Sun","role":"aut","family":"Zhang"},{"family":"Schelb","role":"aut","given":"Patrick","display":"Schelb, Patrick"},{"role":"aut","given":"Simon","family":"Kohl","display":"Kohl, Simon"},{"display":"Radtke, Jan Philipp","given":"Jan Philipp","role":"aut","family":"Radtke"},{"display":"Wiesenfarth, Manuel","given":"Manuel","role":"aut","family":"Wiesenfarth"},{"display":"Schimmoller, Lars","given":"Lars","role":"aut","family":"Schimmoller"},{"display":"Kuder, Tristan Anselm","family":"Kuder","role":"aut","given":"Tristan Anselm"},{"role":"aut","given":"Albrecht","family":"Stenzinger","display":"Stenzinger, Albrecht"},{"role":"aut","given":"Markus","family":"Hohenfellner","display":"Hohenfellner, Markus"},{"display":"Schlemmer, Heinz-Peter","family":"Schlemmer","given":"Heinz-Peter","role":"aut"},{"display":"Maier-Hein, Klaus","role":"aut","given":"Klaus","family":"Maier-Hein"},{"display":"Bonekamp, David","role":"aut","given":"David","family":"Bonekamp"}],"relHost":[{"part":{"text":"82(2021), Seite 9-17","volume":"82","extent":"9","pages":"9-17","year":"2021"},"title":[{"subtitle":"an international journal of basic research and clinical applications","title_sort":"Magnetic resonance imaging","title":"Magnetic resonance imaging"}],"id":{"eki":["306661160"],"issn":["1873-5894"],"zdb":["1500646-3"]},"note":["Gesehen am 29.01.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"pubHistory":["1.1982 -"],"origin":[{"dateIssuedDisp":"1982-","dateIssuedKey":"1982","publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science"}],"disp":"Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADCMagnetic resonance imaging","recId":"306661160","physDesc":[{"extent":"Online-Ressource"}]}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.09.2021"],"title":[{"title_sort":"Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC","title":"Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC"}],"name":{"displayForm":["Kevin Sun Zhang, Patrick Schelb, Simon Kohl, Jan Philipp Radtke, Manuel Wiesenfarth, Lars Schimmoller, Tristan Anselm Kuder, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, Klaus Maier-Hein, David Bonekamp"]},"id":{"doi":["10.1016/j.mri.2021.06.013"],"eki":["176966940X"]}} 
SRT |a ZHANGKEVINIMPROVEMEN1820