C0-stability of topological entropy for contactomorphisms
Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in t...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
1 April 2021
|
| In: |
Communications in contemporary mathematics
Year: 2021, Jahrgang: 23, Heft: 06, Pages: 1-11 |
| ISSN: | 0219-1997 |
| DOI: | 10.1142/S0219199721500152 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0219199721500152 Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S0219199721500152 |
| Verfasserangaben: | Lucas Dahinden |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1769929568 | ||
| 003 | DE-627 | ||
| 005 | 20240513154224.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210909s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S0219199721500152 |2 doi | |
| 035 | |a (DE-627)1769929568 | ||
| 035 | |a (DE-599)KXP1769929568 | ||
| 035 | |a (OCoLC)1341421074 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Dahinden, Lucas |e VerfasserIn |0 (DE-588)1210204797 |0 (DE-627)1698267231 |4 aut | |
| 245 | 1 | 0 | |a C0-stability of topological entropy for contactomorphisms |c Lucas Dahinden |
| 246 | 3 | 3 | |a C 0-stability of topological entropy for contactomorphisms |
| 264 | 1 | |c 1 April 2021 | |
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel ist "0" hochgestellt | ||
| 500 | |a Gesehen am 09.09.2021 | ||
| 520 | |a Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in the sense that there exists a nontrivial continuous lower bound, given that a certain homological invariant grows exponentially. | ||
| 650 | 4 | |a persistent homology | |
| 650 | 4 | |a Rabinowitz Floer homology | |
| 650 | 4 | |a topological entropy | |
| 773 | 0 | 8 | |i Enthalten in |t Communications in contemporary mathematics |d Singapore [u.a.] : World Scientific, 1999 |g 23(2021), 06, Artikel-ID 2150015, Seite 1-11 |h Online-Ressource |w (DE-627)323941001 |w (DE-600)2028769-0 |w (DE-576)11131576X |x 0219-1997 |7 nnas |a C0-stability of topological entropy for contactomorphisms |
| 773 | 1 | 8 | |g volume:23 |g year:2021 |g number:06 |g elocationid:2150015 |g pages:1-11 |g extent:11 |a C0-stability of topological entropy for contactomorphisms |
| 856 | 4 | 0 | |u https://doi.org/10.1142/S0219199721500152 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.worldscientific.com/doi/abs/10.1142/S0219199721500152 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210909 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1210204797 |a Dahinden, Lucas |m 1210204797:Dahinden, Lucas |d 700000 |d 728500 |e 700000PD1210204797 |e 728500PD1210204797 |k 0/700000/ |k 1/700000/728500/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1769929568 |e 397574698X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Dahinden","given":"Lucas","display":"Dahinden, Lucas","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"C0-stability of topological entropy for contactomorphisms","title":"C0-stability of topological entropy for contactomorphisms"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel ist \"0\" hochgestellt","Gesehen am 09.09.2021"],"recId":"1769929568","language":["eng"],"titleAlt":[{"title":"C 0-stability of topological entropy for contactomorphisms"}],"name":{"displayForm":["Lucas Dahinden"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"1 April 2021"}],"id":{"eki":["1769929568"],"doi":["10.1142/S0219199721500152"]},"physDesc":[{"extent":"11 S."}],"relHost":[{"part":{"year":"2021","pages":"1-11","issue":"06","text":"23(2021), 06, Artikel-ID 2150015, Seite 1-11","volume":"23","extent":"11"},"titleAlt":[{"title":"CCM"}],"pubHistory":["1.1999 -"],"language":["eng"],"recId":"323941001","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"C0-stability of topological entropy for contactomorphismsCommunications in contemporary mathematics","title":[{"subtitle":"CCM","title":"Communications in contemporary mathematics","title_sort":"Communications in contemporary mathematics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["323941001"],"zdb":["2028769-0"],"issn":["0219-1997"]},"origin":[{"dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"World Scientific","publisherPlace":"Singapore [u.a.]"}]}]} | ||
| SRT | |a DAHINDENLUC0STABILIT1202 | ||