C0-stability of topological entropy for contactomorphisms

Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dahinden, Lucas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 April 2021
In: Communications in contemporary mathematics
Year: 2021, Jahrgang: 23, Heft: 06, Pages: 1-11
ISSN:0219-1997
DOI:10.1142/S0219199721500152
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0219199721500152
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S0219199721500152
Volltext
Verfasserangaben:Lucas Dahinden

MARC

LEADER 00000caa a2200000 c 4500
001 1769929568
003 DE-627
005 20240513154224.0
007 cr uuu---uuuuu
008 210909s2021 xx |||||o 00| ||eng c
024 7 |a 10.1142/S0219199721500152  |2 doi 
035 |a (DE-627)1769929568 
035 |a (DE-599)KXP1769929568 
035 |a (OCoLC)1341421074 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dahinden, Lucas  |e VerfasserIn  |0 (DE-588)1210204797  |0 (DE-627)1698267231  |4 aut 
245 1 0 |a C0-stability of topological entropy for contactomorphisms  |c Lucas Dahinden 
246 3 3 |a C 0-stability of topological entropy for contactomorphisms 
264 1 |c 1 April 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist "0" hochgestellt 
500 |a Gesehen am 09.09.2021 
520 |a Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in the sense that there exists a nontrivial continuous lower bound, given that a certain homological invariant grows exponentially. 
650 4 |a persistent homology 
650 4 |a Rabinowitz Floer homology 
650 4 |a topological entropy 
773 0 8 |i Enthalten in  |t Communications in contemporary mathematics  |d Singapore [u.a.] : World Scientific, 1999  |g 23(2021), 06, Artikel-ID 2150015, Seite 1-11  |h Online-Ressource  |w (DE-627)323941001  |w (DE-600)2028769-0  |w (DE-576)11131576X  |x 0219-1997  |7 nnas  |a C0-stability of topological entropy for contactomorphisms 
773 1 8 |g volume:23  |g year:2021  |g number:06  |g elocationid:2150015  |g pages:1-11  |g extent:11  |a C0-stability of topological entropy for contactomorphisms 
856 4 0 |u https://doi.org/10.1142/S0219199721500152  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/abs/10.1142/S0219199721500152  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210909 
993 |a Article 
994 |a 2021 
998 |g 1210204797  |a Dahinden, Lucas  |m 1210204797:Dahinden, Lucas  |d 700000  |d 728500  |e 700000PD1210204797  |e 728500PD1210204797  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j  |y j 
999 |a KXP-PPN1769929568  |e 397574698X 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Dahinden","given":"Lucas","display":"Dahinden, Lucas","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"C0-stability of topological entropy for contactomorphisms","title":"C0-stability of topological entropy for contactomorphisms"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel ist \"0\" hochgestellt","Gesehen am 09.09.2021"],"recId":"1769929568","language":["eng"],"titleAlt":[{"title":"C 0-stability of topological entropy for contactomorphisms"}],"name":{"displayForm":["Lucas Dahinden"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"1 April 2021"}],"id":{"eki":["1769929568"],"doi":["10.1142/S0219199721500152"]},"physDesc":[{"extent":"11 S."}],"relHost":[{"part":{"year":"2021","pages":"1-11","issue":"06","text":"23(2021), 06, Artikel-ID 2150015, Seite 1-11","volume":"23","extent":"11"},"titleAlt":[{"title":"CCM"}],"pubHistory":["1.1999 -"],"language":["eng"],"recId":"323941001","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"C0-stability of topological entropy for contactomorphismsCommunications in contemporary mathematics","title":[{"subtitle":"CCM","title":"Communications in contemporary mathematics","title_sort":"Communications in contemporary mathematics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["323941001"],"zdb":["2028769-0"],"issn":["0219-1997"]},"origin":[{"dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"World Scientific","publisherPlace":"Singapore [u.a.]"}]}]} 
SRT |a DAHINDENLUC0STABILIT1202