On limit theorems for persistent Betti numbers from dependent data
We study persistent Betti numbers and persistence diagrams obtained from time series and random fields. It is well known that the persistent Betti function is an efficient descriptor of the topology of a point cloud. So far, convergence results for the (r,s)-persistent Betti number of the qth homolo...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
7 May 2021
|
| In: |
Stochastic processes and their applications
Year: 2021, Volume: 139, Pages: 139-174 |
| ISSN: | 1879-209X |
| DOI: | 10.1016/j.spa.2021.04.013 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.spa.2021.04.013 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0304414921000685 |
| Author Notes: | Johannes Krebs |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1769953574 | ||
| 003 | DE-627 | ||
| 005 | 20240414193341.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210909s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.spa.2021.04.013 |2 doi | |
| 035 | |a (DE-627)1769953574 | ||
| 035 | |a (DE-599)KXP1769953574 | ||
| 035 | |a (OCoLC)1341421161 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Krebs, Johannes |e VerfasserIn |0 (DE-588)1137179813 |0 (DE-627)894147072 |0 (DE-576)491128266 |4 aut | |
| 245 | 1 | 0 | |a On limit theorems for persistent Betti numbers from dependent data |c Johannes Krebs |
| 264 | 1 | |c 7 May 2021 | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 09.09.2021 | ||
| 520 | |a We study persistent Betti numbers and persistence diagrams obtained from time series and random fields. It is well known that the persistent Betti function is an efficient descriptor of the topology of a point cloud. So far, convergence results for the (r,s)-persistent Betti number of the qth homology group, βqr,s, were mainly considered for finite-dimensional point cloud data obtained from i.i.d. observations or stationary point processes such as a Poisson process. In this article, we extend these considerations. We derive limit theorems for the pointwise convergence of persistent Betti numbers βqr,s in the critical regime under quite general dependence settings. | ||
| 650 | 4 | |a Critical regime | |
| 650 | 4 | |a Dependent data | |
| 650 | 4 | |a Limit theorems | |
| 650 | 4 | |a Markov chains | |
| 650 | 4 | |a Marton coupling | |
| 650 | 4 | |a Topological data analysis | |
| 773 | 0 | 8 | |i Enthalten in |t Stochastic processes and their applications |d Amsterdam [u.a.] : Elsevier, 1973 |g 139(2021) vom: Sept., Seite 139-174 |h Online-Ressource |w (DE-627)266886221 |w (DE-600)1468492-5 |w (DE-576)07942015X |x 1879-209X |7 nnas |a On limit theorems for persistent Betti numbers from dependent data |
| 773 | 1 | 8 | |g volume:139 |g year:2021 |g month:09 |g pages:139-174 |g extent:36 |a On limit theorems for persistent Betti numbers from dependent data |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.spa.2021.04.013 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0304414921000685 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210909 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1137179813 |a Krebs, Johannes |m 1137179813:Krebs, Johannes |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PK1137179813 |e 110200PK1137179813 |e 110000PK1137179813 |e 110400PK1137179813 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1769953574 |e 3976250635 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"part":{"year":"2021","pages":"139-174","text":"139(2021) vom: Sept., Seite 139-174","volume":"139","extent":"36"},"pubHistory":["Volume 1, issue 1 (January 1973)-"],"language":["eng"],"recId":"266886221","disp":"On limit theorems for persistent Betti numbers from dependent dataStochastic processes and their applications","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 12.07.24"],"title":[{"title":"Stochastic processes and their applications","title_sort":"Stochastic processes and their applications"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1879-209X"],"zdb":["1468492-5"],"eki":["266886221"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier","dateIssuedKey":"1973","dateIssuedDisp":"1973-"}]}],"physDesc":[{"extent":"36 S."}],"id":{"eki":["1769953574"],"doi":["10.1016/j.spa.2021.04.013"]},"origin":[{"dateIssuedDisp":"7 May 2021","dateIssuedKey":"2021"}],"name":{"displayForm":["Johannes Krebs"]},"language":["eng"],"recId":"1769953574","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 09.09.2021"],"title":[{"title_sort":"On limit theorems for persistent Betti numbers from dependent data","title":"On limit theorems for persistent Betti numbers from dependent data"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Krebs, Johannes","given":"Johannes","family":"Krebs"}]} | ||
| SRT | |a KREBSJOHANONLIMITTHE7202 | ||