Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling

Formal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and employed machine-learning to investigate the neurobiological correlates of FTD along p...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Ji (Author) , Wensing, Tobias (Author) , Hoffstaedter, Felix (Author) , Cieslik, Edna C. (Author) , Müller, Veronika I. (Author) , Patil, Kaustubh R. (Author) , Aleman, André (Author) , Derntl, Birgit (Author) , Gruber, Oliver (Author) , Jardri, Renaud (Author) , Kogler, Lydia (Author) , Sommer, Iris E. (Author) , Eickhoff, Simon B. (Author) , Nickl-Jockschat, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 30 April 2021
In: NeuroImage: Clinical
Year: 2021, Volume: 30, Pages: 1-11
ISSN:2213-1582
DOI:10.1016/j.nicl.2021.102666
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.nicl.2021.102666
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2213158221001108
Get full text
Author Notes:Ji Chen, Tobias Wensing, Felix Hoffstaedter, Edna C. Cieslik, Veronika I. Müller, Kaustubh R. Patil, André Aleman, Birgit Derntl, Oliver Gruber, Renaud Jardri, Lydia Kogler, Iris E. Sommer, Simon B. Eickhoff, Thomas Nickl-Jockschat

MARC

LEADER 00000caa a2200000 c 4500
001 177162289X
003 DE-627
005 20240414193354.0
007 cr uuu---uuuuu
008 210922s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.nicl.2021.102666  |2 doi 
035 |a (DE-627)177162289X 
035 |a (DE-599)KXP177162289X 
035 |a (OCoLC)1341421428 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Chen, Ji  |e VerfasserIn  |0 (DE-588)1203556780  |0 (DE-627)1688530746  |4 aut 
245 1 0 |a Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling  |c Ji Chen, Tobias Wensing, Felix Hoffstaedter, Edna C. Cieslik, Veronika I. Müller, Kaustubh R. Patil, André Aleman, Birgit Derntl, Oliver Gruber, Renaud Jardri, Lydia Kogler, Iris E. Sommer, Simon B. Eickhoff, Thomas Nickl-Jockschat 
264 1 |c 30 April 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.09.2021 
520 |a Formal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and employed machine-learning to investigate the neurobiological correlates of FTD along positive and negative symptom dimensions in schizophrenia. Three a priori, meta-analytically defined FTD-related brain regions were used as seeds to generate whole-brain resting-state functional connectivity (rsFC) maps, which were then compared between schizophrenia patients and controls. A repeated cross-validation procedure was realized within the patient group to identify clusters whose rsFC patterns to the seeds were repeatedly observed as significantly associated with specific FTD dimensions. These repeatedly identified clusters (i.e., robust clusters) were functionally characterized and the rsFC patterns were used for predictive modeling to investigate predictive capacities for individual FTD dimensional-scores. Compared with controls, differential rsFC was found in patients in fronto-temporo-thalamic regions. Our cross-validation procedure revealed significant clusters only when assessing the seed-to-whole-brain rsFC patterns associated with positive-FTD. RsFC patterns of three fronto-temporal clusters, associated with higher-order cognitive processes (e.g., executive functions), specifically predicted individual positive-FTD scores (p = 0.005), but not other positive symptoms, and the PANSS general psychopathology subscale (p > 0.05). The prediction of positive-FTD was moreover generalized to an independent dataset (p = 0.013). Our study has identified neurobiological correlates of positive FTD in schizophrenia in a network associated with higher-order cognitive functions, suggesting a dysexecutive contribution to FTD in schizophrenia. We regard our findings as robust, as they allow a prediction of individual-level symptom severity. 
650 4 |a Formal thought disorder 
650 4 |a Machine learning 
650 4 |a Neuroimaging 
700 1 |a Wensing, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Hoffstaedter, Felix  |e VerfasserIn  |4 aut 
700 1 |a Cieslik, Edna C.  |e VerfasserIn  |4 aut 
700 1 |a Müller, Veronika I.  |e VerfasserIn  |4 aut 
700 1 |a Patil, Kaustubh R.  |e VerfasserIn  |4 aut 
700 1 |a Aleman, André  |e VerfasserIn  |4 aut 
700 1 |a Derntl, Birgit  |e VerfasserIn  |4 aut 
700 1 |a Gruber, Oliver  |d 1968-  |e VerfasserIn  |0 (DE-588)121160793  |0 (DE-627)08112502X  |0 (DE-576)292563590  |4 aut 
700 1 |a Jardri, Renaud  |e VerfasserIn  |4 aut 
700 1 |a Kogler, Lydia  |e VerfasserIn  |4 aut 
700 1 |a Sommer, Iris E.  |e VerfasserIn  |4 aut 
700 1 |a Eickhoff, Simon B.  |e VerfasserIn  |4 aut 
700 1 |a Nickl-Jockschat, Thomas  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t NeuroImage: Clinical  |d [Amsterdam u.a.] : Elsevier, 2012  |g 30(2021), Artikel-ID 102666, Seite 1-11  |h Online-Ressource  |w (DE-627)735358869  |w (DE-600)2701571-3  |w (DE-576)378496964  |x 2213-1582  |7 nnas  |a Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling 
773 1 8 |g volume:30  |g year:2021  |g elocationid:102666  |g pages:1-11  |g extent:11  |a Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling 
856 4 0 |u https://doi.org/10.1016/j.nicl.2021.102666  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2213158221001108  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210922 
993 |a Article 
994 |a 2021 
998 |g 121160793  |a Gruber, Oliver  |m 121160793:Gruber, Oliver  |d 910000  |d 910600  |e 910000PG121160793  |e 910600PG121160793  |k 0/910000/  |k 1/910000/910600/  |p 9 
999 |a KXP-PPN177162289X  |e 3980285286 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title":"Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling","title_sort":"Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling"}],"note":["Gesehen am 22.09.2021"],"relHost":[{"language":["eng"],"part":{"pages":"1-11","extent":"11","text":"30(2021), Artikel-ID 102666, Seite 1-11","year":"2021","volume":"30"},"title":[{"title":"NeuroImage: Clinical","subtitle":"a journal of diseases affecting the nervous system ; open access journal","title_sort":"NeuroImage: Clinical"}],"pubHistory":["1.2012 -"],"note":["Gesehen am 08.05.13"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2701571-3"],"issn":["2213-1582"],"eki":["735358869"]},"disp":"Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modelingNeuroImage: Clinical","type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisherPlace":"[Amsterdam u.a.]","dateIssuedKey":"2012","dateIssuedDisp":"2012-","publisher":"Elsevier"}],"recId":"735358869"}],"physDesc":[{"extent":"11 S."}],"id":{"eki":["177162289X"],"doi":["10.1016/j.nicl.2021.102666"]},"recId":"177162289X","origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"30 April 2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"family":"Chen","display":"Chen, Ji","given":"Ji","role":"aut"},{"family":"Wensing","role":"aut","given":"Tobias","display":"Wensing, Tobias"},{"family":"Hoffstaedter","display":"Hoffstaedter, Felix","given":"Felix","role":"aut"},{"display":"Cieslik, Edna C.","given":"Edna C.","role":"aut","family":"Cieslik"},{"family":"Müller","display":"Müller, Veronika I.","role":"aut","given":"Veronika I."},{"role":"aut","given":"Kaustubh R.","display":"Patil, Kaustubh R.","family":"Patil"},{"family":"Aleman","role":"aut","given":"André","display":"Aleman, André"},{"family":"Derntl","display":"Derntl, Birgit","given":"Birgit","role":"aut"},{"family":"Gruber","display":"Gruber, Oliver","role":"aut","given":"Oliver"},{"role":"aut","given":"Renaud","display":"Jardri, Renaud","family":"Jardri"},{"given":"Lydia","role":"aut","display":"Kogler, Lydia","family":"Kogler"},{"role":"aut","given":"Iris E.","display":"Sommer, Iris E.","family":"Sommer"},{"display":"Eickhoff, Simon B.","role":"aut","given":"Simon B.","family":"Eickhoff"},{"family":"Nickl-Jockschat","given":"Thomas","role":"aut","display":"Nickl-Jockschat, Thomas"}],"name":{"displayForm":["Ji Chen, Tobias Wensing, Felix Hoffstaedter, Edna C. Cieslik, Veronika I. Müller, Kaustubh R. Patil, André Aleman, Birgit Derntl, Oliver Gruber, Renaud Jardri, Lydia Kogler, Iris E. Sommer, Simon B. Eickhoff, Thomas Nickl-Jockschat"]}} 
SRT |a CHENJIWENSNEUROBIOLO3020