A model based algorithm for perfusion estimation in interventional C-arm CT systems

Purpose: Interventional C-arm CT imaging, today, plays an important role in the diagnosis and treatment of patients. The main part of the 3D imaging techniques, currently used in interventions, are morphological imaging techniques. So far, the ability for functional or perfusion imaging is limited,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wagner, Martin (VerfasserIn) , Deuerling-Zheng, Yu (VerfasserIn) , Möhlenbruch, Markus Alfred (VerfasserIn) , Bendszus, Martin (VerfasserIn) , Boese, Jan (VerfasserIn) , Heiland, Sabine (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 March 2013
In: Medical physics
Year: 2013, Jahrgang: 40, Heft: 3, Pages: 1-11
ISSN:2473-4209
DOI:10.1118/1.4790467
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1118/1.4790467
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1118/1.4790467
Volltext
Verfasserangaben:Martin Wagner, Yu Deuerling-Zheng, Markus Möhlenbruch, Martin Bendszus, Jan Boese, Sabine Heiland

MARC

LEADER 00000caa a2200000 c 4500
001 177169937X
003 DE-627
005 20230427130224.0
007 cr uuu---uuuuu
008 210923s2013 xx |||||o 00| ||eng c
024 7 |a 10.1118/1.4790467  |2 doi 
035 |a (DE-627)177169937X 
035 |a (DE-599)KXP177169937X 
035 |a (OCoLC)1341421263 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wagner, Martin  |d 1983-  |e VerfasserIn  |0 (DE-588)1051422167  |0 (DE-627)78617689X  |0 (DE-576)406446229  |4 aut 
245 1 2 |a A model based algorithm for perfusion estimation in interventional C-arm CT systems  |c Martin Wagner, Yu Deuerling-Zheng, Markus Möhlenbruch, Martin Bendszus, Jan Boese, Sabine Heiland 
264 1 |c 1 March 2013 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.09.2021 
520 |a Purpose: Interventional C-arm CT imaging, today, plays an important role in the diagnosis and treatment of patients. The main part of the 3D imaging techniques, currently used in interventions, are morphological imaging techniques. So far, the ability for functional or perfusion imaging is limited, e.g., only static cerebral blood volume measurement [A. S. Ahmed, Y. Deuerling-Zheng, C. M. Strother, K. A. Pulfer, M. Zellerhoff, T. Redel, K. Royalty, D. Consigny, M. J. Lindstrom, and D. B. Niemann, “Impact of intra-arterial injection parameters on arterial, capillary, and venous time-concentration curves in a ca480 nine model,” AJNR Am. J. Neuroradiol. 30, - (2009) 10.3174/ajnr.A1586] is available. The sample rate of current C-arm CT systems is not fast enough yet to measure dynamic parameters like cerebral blood flow using standard Feldkamp reconstruction. Methods: The authors propose a reconstruction algorithm that models the time-dependent attenuation values of each voxel using a gamma-variate function. The method can be divided into a segmentation-based initialization and an iterative optimization step. For the initialization, a threshold-based segmentation of vessel, tissue, and nondynamic structures (e.g., bone and air) is performed on the filtered backprojection (FBP) reconstructions. For each of these regions, homogeneous time-attenuation curves are estimated to initialize all the voxels within the region. The scaling-factor is then adjusted for each voxel using the attenuation values of the static reconstructions. The second part of the algorithm is an iterative optimization of the gamma-variate parameters of each voxel, based on a simultaneous algebraic reconstruction technique. Within each iteration, a Levenberg optimization is applied to minimize the backprojected errors. Results: The algorithm is quantitatively evaluated with simulated forward projections as well as real C-arm CT projection data. In the phantom experiments, penumbra and infarct core could be segmented with an adjusted Rand index of up to 0.95 for a noise level of 105 photons. Perfusion CT data sets from three patients were used to compare the iterative reconstruction approach to the interpolated FBP reconstruction using different sweep times. In their experiments, a sweep time of 4 s using iterative reconstruction would be equivalent to that using interpolated FBP with a sweep time of around 1 s. The reconstruction results of the animal study are compared to a perfusion CT acquisition, sampled with 1 frame per second. A correlation coefficient of 0.75 between the original and the reconstructed CBF-maps could be reached with the iterative approach compared to 0.56 using the interpolated FBP reconstruction. Conclusions: In their experiments, the quality of dynamic perfusion measurements was improved using the proposed reconstruction algorithm compared to static reconstruction followed by interpolation. It could be used to increase the temporal resolution of current C-arm CT system without hardware modification to make them feasible for dynamic perfusion measurement. Furthermore, radiation dose could be reduced using their method to increase temporal resolution than using static reconstruction with a higher sampling frequency. 
650 4 |a backpropagation 
650 4 |a Computed tomography 
650 4 |a Computerised tomographs 
650 4 |a computerised tomography 
650 4 |a computerized tomography 
650 4 |a Digital computing or data processing equipment or methods 
650 4 |a dynamic reconstruction 
650 4 |a Flow visualization 
650 4 |a Fluid transport and rheology 
650 4 |a Haemodynamics 
650 4 |a haemorheology 
650 4 |a Image data processing or generation 
650 4 |a image reconstruction 
650 4 |a Image reconstruction 
650 4 |a image segmentation 
650 4 |a in general 
650 4 |a Interpolation 
650 4 |a iterative methods 
650 4 |a iterative reconstruction 
650 4 |a Medical image noise 
650 4 |a medical image processing 
650 4 |a Medical image quality 
650 4 |a Medical image reconstruction 
650 4 |a Medical imaging 
650 4 |a model function 
650 4 |a perfusion imaging 
650 4 |a Reconstruction 
650 4 |a Segmentation 
650 4 |a specially adapted for specific applications 
650 4 |a Tissues 
700 1 |a Deuerling-Zheng, Yu  |e VerfasserIn  |4 aut 
700 1 |a Möhlenbruch, Markus Alfred  |d 1979-  |e VerfasserIn  |0 (DE-588)137693591  |0 (DE-627)594845041  |0 (DE-576)304845655  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Boese, Jan  |e VerfasserIn  |4 aut 
700 1 |a Heiland, Sabine  |e VerfasserIn  |0 (DE-588)106732626X  |0 (DE-627)818624450  |0 (DE-576)426561368  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 40(2013), 3, Artikel-ID 031916, Seite 1-11  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a A model based algorithm for perfusion estimation in interventional C-arm CT systems 
773 1 8 |g volume:40  |g year:2013  |g number:3  |g elocationid:031916  |g pages:1-11  |g extent:11  |a A model based algorithm for perfusion estimation in interventional C-arm CT systems 
856 4 0 |u https://doi.org/10.1118/1.4790467  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1118/1.4790467  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210923 
993 |a Article 
994 |a 2013 
998 |g 106732626X  |a Heiland, Sabine  |m 106732626X:Heiland, Sabine  |d 910000  |d 911100  |e 910000PH106732626X  |e 911100PH106732626X  |k 0/910000/  |k 1/910000/911100/  |p 6  |y j 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 4 
998 |g 137693591  |a Möhlenbruch, Markus Alfred  |m 137693591:Möhlenbruch, Markus Alfred  |d 910000  |d 911100  |e 910000PM137693591  |e 911100PM137693591  |k 0/910000/  |k 1/910000/911100/  |p 3 
998 |g 1051422167  |a Wagner, Martin  |m 1051422167:Wagner, Martin  |d 50000  |e 50000PW1051422167  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN177169937X  |e 3980565645 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"177169937X","physDesc":[{"extent":"11 S."}],"title":[{"title_sort":"model based algorithm for perfusion estimation in interventional C-arm CT systems","title":"A model based algorithm for perfusion estimation in interventional C-arm CT systems"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 23.09.2021"],"origin":[{"dateIssuedDisp":"1 March 2013","dateIssuedKey":"2013"}],"relHost":[{"part":{"volume":"40","year":"2013","issue":"3","extent":"11","text":"40(2013), 3, Artikel-ID 031916, Seite 1-11","pages":"1-11"},"id":{"zdb":["1466421-5"],"issn":["2473-4209","1522-8541"],"eki":["265784867"]},"titleAlt":[{"title":"Medical physics online"}],"pubHistory":["1.1974 -"],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"note":["Gesehen am 01.08.2025"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"Medical physics","title":"Medical physics"}],"origin":[{"dateIssuedKey":"1974","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]"}],"disp":"A model based algorithm for perfusion estimation in interventional C-arm CT systemsMedical physics","physDesc":[{"extent":"Online-Ressource"}],"recId":"265784867"}],"person":[{"display":"Wagner, Martin","family":"Wagner","role":"aut","given":"Martin"},{"given":"Yu","role":"aut","family":"Deuerling-Zheng","display":"Deuerling-Zheng, Yu"},{"family":"Möhlenbruch","role":"aut","given":"Markus Alfred","display":"Möhlenbruch, Markus Alfred"},{"role":"aut","given":"Martin","family":"Bendszus","display":"Bendszus, Martin"},{"display":"Boese, Jan","family":"Boese","role":"aut","given":"Jan"},{"family":"Heiland","role":"aut","given":"Sabine","display":"Heiland, Sabine"}],"id":{"eki":["177169937X"],"doi":["10.1118/1.4790467"]},"name":{"displayForm":["Martin Wagner, Yu Deuerling-Zheng, Markus Möhlenbruch, Martin Bendszus, Jan Boese, Sabine Heiland"]}} 
SRT |a WAGNERMARTMODELBASED1201