Dimensionally consistent preconditioning for saddle-point problems

The preconditioned iterative solution of large-scale saddle-point systems is of great importance in numerous application areas, many of them involving partial differential equations. Robustness with respect to certain problem parameters is often a concern, and it can be addressed by identifying prop...

Full description

Saved in:
Bibliographic Details
Main Author: Herzog, Roland (Author)
Format: Article (Journal)
Language:English
Published: 18 May 2021
In: Computational methods in applied mathematics
Year: 2021, Volume: 21, Issue: 3, Pages: 1-19
ISSN:1609-9389
DOI:10.1515/cmam-2020-0037
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/cmam-2020-0037
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0037/html
Get full text
Author Notes:Roland Herzog

MARC

LEADER 00000caa a2200000 c 4500
001 1771772239
003 DE-627
005 20250530002958.0
007 cr uuu---uuuuu
008 210924s2021 xx |||||o 00| ||eng c
024 7 |a 10.1515/cmam-2020-0037  |2 doi 
035 |a (DE-627)1771772239 
035 |a (DE-599)KXP1771772239 
035 |a (OCoLC)1341421487 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Herzog, Roland  |d 1974-  |e VerfasserIn  |0 (DE-588)1032195827  |0 (DE-627)738007285  |0 (DE-576)379874830  |4 aut 
245 1 0 |a Dimensionally consistent preconditioning for saddle-point problems  |c Roland Herzog 
264 1 |c 18 May 2021 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.09.2021 
520 |a The preconditioned iterative solution of large-scale saddle-point systems is of great importance in numerous application areas, many of them involving partial differential equations. Robustness with respect to certain problem parameters is often a concern, and it can be addressed by identifying proper scalings of preconditioner building blocks. In this paper, we consider a new perspective to finding effective and robust preconditioners. Our approach is based on the consideration of the natural physical units underlying the respective saddle-point problem. This point of view, which we refer to as dimensional consistency, suggests a natural combination of the parameters intrinsic to the problem. It turns out that the scaling obtained in this way leads to robustness with respect to problem parameters in many relevant cases. As a consequence, we advertise dimensional consistency based preconditioning as a new and systematic way to designing parameter robust preconditoners for saddle-point systems arising from models for physical phenomena. 
650 4 |a Dimensional Consistency 
650 4 |a Minimum Residual Method 
650 4 |a Physical Units 
650 4 |a Preconditioning 
650 4 |a Saddle-Point Problems 
773 0 8 |i Enthalten in  |t Computational methods in applied mathematics  |d Berlin : De Gruyter, 2001  |g 21(2021), 3, Artikel-ID 593-607, Seite 1-19  |h Online-Ressource  |w (DE-627)345035380  |w (DE-600)2075629-X  |w (DE-576)347264921  |x 1609-9389  |7 nnas  |a Dimensionally consistent preconditioning for saddle-point problems 
773 1 8 |g volume:21  |g year:2021  |g number:3  |g elocationid:593-607  |g pages:1-19  |g extent:19  |a Dimensionally consistent preconditioning for saddle-point problems 
856 4 0 |u https://doi.org/10.1515/cmam-2020-0037  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0037/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210924 
993 |a Article 
994 |a 2021 
998 |g 1032195827  |a Herzog, Roland  |m 1032195827:Herzog, Roland  |d 700000  |d 708000  |e 700000PH1032195827  |e 708000PH1032195827  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j  |y j 
999 |a KXP-PPN1771772239  |e 3981273796 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"disp":"Dimensionally consistent preconditioning for saddle-point problemsComputational methods in applied mathematics","note":["Gesehen am 29.01.13"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Computational methods in applied mathematics","title_sort":"Computational methods in applied mathematics"}],"language":["eng"],"origin":[{"dateIssuedDisp":"2001-","publisher":"De Gruyter ; Institute of Mathematics of the National Academy of Sciences of Belarus","dateIssuedKey":"2001","publisherPlace":"Berlin ; Minsk"}],"recId":"345035380","titleAlt":[{"title":"CMAM"}],"id":{"issn":["1609-9389"],"zdb":["2075629-X"],"eki":["345035380"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"extent":"19","year":"2021","volume":"21","text":"21(2021), 3, Artikel-ID 593-607, Seite 1-19","issue":"3","pages":"1-19"},"pubHistory":["1.2001 -"]}],"title":[{"title":"Dimensionally consistent preconditioning for saddle-point problems","title_sort":"Dimensionally consistent preconditioning for saddle-point problems"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1771772239"],"doi":["10.1515/cmam-2020-0037"]},"physDesc":[{"extent":"19 S."}],"person":[{"given":"Roland","family":"Herzog","role":"aut","display":"Herzog, Roland"}],"language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"18 May 2021"}],"note":["Gesehen am 24.09.2021"],"name":{"displayForm":["Roland Herzog"]},"recId":"1771772239"} 
SRT |a HERZOGROLADIMENSIONA1820