Goodness-of-fit tests for multivariate copula-based time series models

In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copu...

Full description

Saved in:
Bibliographic Details
Main Authors: Berghaus, Betina (Author) , Bücher, Axel (Author)
Format: Article (Journal)
Language:English
Published: 2017
In: Econometric theory
Year: 2017, Volume: 33, Issue: 2, Pages: 292-330
ISSN:1469-4360
DOI:10.1017/S0266466615000419
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0266466615000419
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/econometric-theory/article/goodnessoffit-tests-for-multivariate-copulabased-time-series-models/6AFA25B448051861C9CCE1C78E3A3EAC
Get full text
Author Notes:Betina Berghaus and Axel Bücher
Description
Summary:In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copula. Our approach is based on a dependent multiplier bootstrap and it can be applied to any stationary, strongly mixing time series. The method extends recent i.i.d. results by Kojadinovic et al. (2011) and shares the same computational benefits compared to methods based on a parametric bootstrap. The finite-sample performance of our approach is investigated by Monte Carlo experiments for the case of copula-based Markovian time series models.
Item Description:Published online by Cambridge University Press: 29 January 2016
Gesehen am 27.09.2021
Physical Description:Online Resource
ISSN:1469-4360
DOI:10.1017/S0266466615000419