Siegel modular varieties and the Eisenstein cohomology of PGL2g+1

We use the twisted topological trace formula developed in Weselmann (Compos. Math. 148:65-120, 2012) to understand liftings from symplectic to general linear groups. We analyse the lift from SP2gto PGL2g+1 over the ground field $${\mathbb{Q}}$$in further detail, and we get a description of the image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Weselmann, Uwe (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 May 2014
In: Manuscripta mathematica
Year: 2014, Jahrgang: 145, Heft: 1, Pages: 175-220
ISSN:1432-1785
DOI:10.1007/s00229-014-0676-8
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00229-014-0676-8
Volltext
Verfasserangaben:Uwe Weselmann

MARC

LEADER 00000caa a2200000 c 4500
001 177191064X
003 DE-627
005 20220820051307.0
007 cr uuu---uuuuu
008 210927s2014 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00229-014-0676-8  |2 doi 
035 |a (DE-627)177191064X 
035 |a (DE-599)KXP177191064X 
035 |a (OCoLC)1341421561 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Weselmann, Uwe  |e VerfasserIn  |0 (DE-588)1172311536  |0 (DE-627)1041112874  |0 (DE-576)514503122  |4 aut 
245 1 0 |a Siegel modular varieties and the Eisenstein cohomology of PGL2g+1  |c Uwe Weselmann 
246 3 3 |a Siegel modular varieties and the Eisenstein cohomology of PGL 2 g + 1 
264 1 |c 13 May 2014 
300 |a 46 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel sind "2g+1" tiefgestellt 
500 |a Gesehen am 27.09.2021 
520 |a We use the twisted topological trace formula developed in Weselmann (Compos. Math. 148:65-120, 2012) to understand liftings from symplectic to general linear groups. We analyse the lift from SP2gto PGL2g+1 over the ground field $${\mathbb{Q}}$$in further detail, and we get a description of the image of this lift of the L2 cohomology of SP2g(which is related to the intersection cohomology of the Shimura variety attached to GSp2g) in terms of the Eisenstein cohomology of the general linear group, whose building constituents are cuspidal representations of Levi groups. This description may be used to understand endoscopic and CAP-representations of the symplectic group. 
773 0 8 |i Enthalten in  |t Manuscripta mathematica  |d Berlin : Springer, 1969  |g 145(2014), 1, Seite 175-220  |h Online-Ressource  |w (DE-627)253770637  |w (DE-600)1459409-2  |w (DE-576)072578661  |x 1432-1785  |7 nnas  |a Siegel modular varieties and the Eisenstein cohomology of PGL2g+1 
773 1 8 |g volume:145  |g year:2014  |g number:1  |g pages:175-220  |g extent:46  |a Siegel modular varieties and the Eisenstein cohomology of PGL2g+1 
856 4 0 |u https://doi.org/10.1007/s00229-014-0676-8  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210927 
993 |a Article 
994 |a 2014 
998 |g 1172311536  |a Weselmann, Uwe  |m 1172311536:Weselmann, Uwe  |p 1  |x j  |y j 
999 |a KXP-PPN177191064X  |e 3981639979 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"46 S."}],"relHost":[{"title":[{"title":"Manuscripta mathematica","title_sort":"Manuscripta mathematica"}],"part":{"extent":"46","text":"145(2014), 1, Seite 175-220","volume":"145","issue":"1","pages":"175-220","year":"2014"},"pubHistory":["1.1969 -"],"recId":"253770637","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Siegel modular varieties and the Eisenstein cohomology of PGL2g+1Manuscripta mathematica","note":["Gesehen am 01.12.05"],"id":{"zdb":["1459409-2"],"eki":["253770637"],"issn":["1432-1785"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisher":"Springer"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedDisp":"13 May 2014","dateIssuedKey":"2014"}],"id":{"eki":["177191064X"],"doi":["10.1007/s00229-014-0676-8"]},"name":{"displayForm":["Uwe Weselmann"]},"titleAlt":[{"title":"Siegel modular varieties and the Eisenstein cohomology of PGL 2 g + 1"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel sind \"2g+1\" tiefgestellt","Gesehen am 27.09.2021"],"language":["eng"],"recId":"177191064X","title":[{"title_sort":"Siegel modular varieties and the Eisenstein cohomology of PGL2g+1","title":"Siegel modular varieties and the Eisenstein cohomology of PGL2g+1"}],"person":[{"given":"Uwe","family":"Weselmann","role":"aut","display":"Weselmann, Uwe","roleDisplay":"VerfasserIn"}]} 
SRT |a WESELMANNUSIEGELMODU1320