Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation
We are concerned with a convergence analysis of an adaptive interior penalty discontinuous Galerkin (IPDG) method for the numerical solution of acoustic wave propagation problems as described by the Helmholtz equation. The mesh adaptivity relies on a residual-type a posteriori error estimator that n...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2013
|
| In: |
IMA journal of numerical analysis
Year: 2013, Jahrgang: 33, Heft: 3, Pages: 898-921 |
| ISSN: | 1464-3642 |
| DOI: | 10.1093/imanum/drs028 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imanum/drs028 |
| Verfasserangaben: | R.H.W. Hoppe and N. Sharma |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1771938455 | ||
| 003 | DE-627 | ||
| 005 | 20220820051403.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210928s2013 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imanum/drs028 |2 doi | |
| 035 | |a (DE-627)1771938455 | ||
| 035 | |a (DE-599)KXP1771938455 | ||
| 035 | |a (OCoLC)1341421445 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hoppe, Ronald H. W. |d 1951- |e VerfasserIn |0 (DE-588)133246876 |0 (DE-627)539314706 |0 (DE-576)161484611 |4 aut | |
| 245 | 1 | 0 | |a Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation |c R.H.W. Hoppe and N. Sharma |
| 264 | 1 | |c 2013 | |
| 300 | |a 24 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.09.2021 | ||
| 500 | |a Published: 23 November 2012 | ||
| 520 | |a We are concerned with a convergence analysis of an adaptive interior penalty discontinuous Galerkin (IPDG) method for the numerical solution of acoustic wave propagation problems as described by the Helmholtz equation. The mesh adaptivity relies on a residual-type a posteriori error estimator that not only controls the approximation error but also the consistency error caused by the nonconformity of the approach. As in the case of IPDG for standard second-order elliptic boundary-value problems, the convergence analysis is based on the reliability of the estimator, an estimator reduction property and a quasi-orthogonality result. However, in contrast to the standard case, special attention has to be paid to a proper treatment of the lower-order term in the equation containing the wave number, which is taken care of by an Aubin-Nitsche-type argument for the associated conforming finite element approximation. Numerical results are given for an interior Dirichlet problem and a screen problem, illustrating the performance of the adaptive IPDG method. | ||
| 700 | 1 | |a Sharma, Natasha |e VerfasserIn |0 (DE-588)1151139300 |0 (DE-627)1011374293 |0 (DE-576)497506807 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Institute of Mathematics and Its Applications |t IMA journal of numerical analysis |d Oxford : Oxford Univ. Press, 1981 |g 33(2013), 3, Seite 898-921 |h Online-Ressource |w (DE-627)266016162 |w (DE-600)1466710-1 |w (DE-576)074960075 |x 1464-3642 |7 nnas |
| 773 | 1 | 8 | |g volume:33 |g year:2013 |g number:3 |g pages:898-921 |g extent:24 |a Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imanum/drs028 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210928 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 1151139300 |a Sharma, Natasha |m 1151139300:Sharma, Natasha |d 700000 |d 708000 |e 700000PS1151139300 |e 708000PS1151139300 |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 999 | |a KXP-PPN1771938455 |e 398173310X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"role":"aut","display":"Hoppe, Ronald H. W.","roleDisplay":"VerfasserIn","given":"Ronald H. W.","family":"Hoppe"},{"roleDisplay":"VerfasserIn","display":"Sharma, Natasha","role":"aut","family":"Sharma","given":"Natasha"}],"title":[{"title_sort":"Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation","title":"Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 28.09.2021"," Published: 23 November 2012"],"language":["eng"],"recId":"1771938455","name":{"displayForm":["R.H.W. Hoppe and N. Sharma"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"id":{"eki":["1771938455"],"doi":["10.1093/imanum/drs028"]},"physDesc":[{"extent":"24 S."}],"relHost":[{"origin":[{"publisherPlace":"Oxford","dateIssuedDisp":"1981-","dateIssuedKey":"1981","publisher":"Oxford Univ. Press"}],"id":{"eki":["266016162"],"zdb":["1466710-1"],"issn":["1464-3642"]},"name":{"displayForm":["the Institute of Mathematics and Its Applications, Southend-on-Sea"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IMA journal of numerical analysis","subtitle":"IMAJNA","title":"IMA journal of numerical analysis"}],"pubHistory":["1.1981 -"],"titleAlt":[{"title":"Journal of numerical analysis"},{"title":"IMAJNA"}],"part":{"issue":"3","pages":"898-921","year":"2013","extent":"24","text":"33(2013), 3, Seite 898-921","volume":"33"},"disp":"Institute of Mathematics and Its ApplicationsIMA journal of numerical analysis","note":["Gesehen am 15. Februar 2017"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"display":"Institute of Mathematics and Its Applications","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"266016162"}]} | ||
| SRT | |a HOPPERONALCONVERGENC2013 | ||