Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation

We are concerned with a convergence analysis of an adaptive interior penalty discontinuous Galerkin (IPDG) method for the numerical solution of acoustic wave propagation problems as described by the Helmholtz equation. The mesh adaptivity relies on a residual-type a posteriori error estimator that n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoppe, Ronald H. W. (VerfasserIn) , Sharma, Natasha (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: IMA journal of numerical analysis
Year: 2013, Jahrgang: 33, Heft: 3, Pages: 898-921
ISSN:1464-3642
DOI:10.1093/imanum/drs028
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imanum/drs028
Volltext
Verfasserangaben:R.H.W. Hoppe and N. Sharma

MARC

LEADER 00000caa a2200000 c 4500
001 1771938455
003 DE-627
005 20220820051403.0
007 cr uuu---uuuuu
008 210928s2013 xx |||||o 00| ||eng c
024 7 |a 10.1093/imanum/drs028  |2 doi 
035 |a (DE-627)1771938455 
035 |a (DE-599)KXP1771938455 
035 |a (OCoLC)1341421445 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hoppe, Ronald H. W.  |d 1951-  |e VerfasserIn  |0 (DE-588)133246876  |0 (DE-627)539314706  |0 (DE-576)161484611  |4 aut 
245 1 0 |a Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation  |c R.H.W. Hoppe and N. Sharma 
264 1 |c 2013 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.09.2021 
500 |a  Published: 23 November 2012 
520 |a We are concerned with a convergence analysis of an adaptive interior penalty discontinuous Galerkin (IPDG) method for the numerical solution of acoustic wave propagation problems as described by the Helmholtz equation. The mesh adaptivity relies on a residual-type a posteriori error estimator that not only controls the approximation error but also the consistency error caused by the nonconformity of the approach. As in the case of IPDG for standard second-order elliptic boundary-value problems, the convergence analysis is based on the reliability of the estimator, an estimator reduction property and a quasi-orthogonality result. However, in contrast to the standard case, special attention has to be paid to a proper treatment of the lower-order term in the equation containing the wave number, which is taken care of by an Aubin-Nitsche-type argument for the associated conforming finite element approximation. Numerical results are given for an interior Dirichlet problem and a screen problem, illustrating the performance of the adaptive IPDG method. 
700 1 |a Sharma, Natasha  |e VerfasserIn  |0 (DE-588)1151139300  |0 (DE-627)1011374293  |0 (DE-576)497506807  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Mathematics and Its Applications  |t IMA journal of numerical analysis  |d Oxford : Oxford Univ. Press, 1981  |g 33(2013), 3, Seite 898-921  |h Online-Ressource  |w (DE-627)266016162  |w (DE-600)1466710-1  |w (DE-576)074960075  |x 1464-3642  |7 nnas 
773 1 8 |g volume:33  |g year:2013  |g number:3  |g pages:898-921  |g extent:24  |a Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation 
856 4 0 |u https://doi.org/10.1093/imanum/drs028  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210928 
993 |a Article 
994 |a 2013 
998 |g 1151139300  |a Sharma, Natasha  |m 1151139300:Sharma, Natasha  |d 700000  |d 708000  |e 700000PS1151139300  |e 708000PS1151139300  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
999 |a KXP-PPN1771938455  |e 398173310X 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Hoppe, Ronald H. W.","roleDisplay":"VerfasserIn","given":"Ronald H. W.","family":"Hoppe"},{"roleDisplay":"VerfasserIn","display":"Sharma, Natasha","role":"aut","family":"Sharma","given":"Natasha"}],"title":[{"title_sort":"Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation","title":"Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 28.09.2021"," Published: 23 November 2012"],"language":["eng"],"recId":"1771938455","name":{"displayForm":["R.H.W. Hoppe and N. Sharma"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"id":{"eki":["1771938455"],"doi":["10.1093/imanum/drs028"]},"physDesc":[{"extent":"24 S."}],"relHost":[{"origin":[{"publisherPlace":"Oxford","dateIssuedDisp":"1981-","dateIssuedKey":"1981","publisher":"Oxford Univ. Press"}],"id":{"eki":["266016162"],"zdb":["1466710-1"],"issn":["1464-3642"]},"name":{"displayForm":["the Institute of Mathematics and Its Applications, Southend-on-Sea"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IMA journal of numerical analysis","subtitle":"IMAJNA","title":"IMA journal of numerical analysis"}],"pubHistory":["1.1981 -"],"titleAlt":[{"title":"Journal of numerical analysis"},{"title":"IMAJNA"}],"part":{"issue":"3","pages":"898-921","year":"2013","extent":"24","text":"33(2013), 3, Seite 898-921","volume":"33"},"disp":"Institute of Mathematics and Its ApplicationsIMA journal of numerical analysis","note":["Gesehen am 15. Februar 2017"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"display":"Institute of Mathematics and Its Applications","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"266016162"}]} 
SRT |a HOPPERONALCONVERGENC2013