Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods

We discuss the efficient implementation of powerful domain decomposition smoothers for multigrid methods for high-order discontinuous Galerkin (DG) finite element methods. In particular, we study the inversion of matrices associated to mesh cells and to the patches around a vertex, respectively, in...

Full description

Saved in:
Bibliographic Details
Main Authors: Witte, Julius (Author) , Arndt, Daniel (Author) , Kanschat, Guido (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Computational methods in applied mathematics
Year: 2021, Volume: 21, Issue: 3, Pages: 709-728
ISSN:1609-9389
DOI:10.1515/cmam-2020-0078
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/cmam-2020-0078
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0078/html
Get full text
Author Notes:Julius Witte, Daniel Arndt, and Guido Kanschat

MARC

LEADER 00000caa a2200000 c 4500
001 1772047392
003 DE-627
005 20250530002958.0
007 cr uuu---uuuuu
008 210929s2021 xx |||||o 00| ||eng c
024 7 |a 10.1515/cmam-2020-0078  |2 doi 
035 |a (DE-627)1772047392 
035 |a (DE-599)KXP1772047392 
035 |a (OCoLC)1389537980 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Witte, Julius  |d 1989-  |e VerfasserIn  |0 (DE-588)1242118985  |0 (DE-627)1772047961  |4 aut 
245 1 0 |a Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods  |c Julius Witte, Daniel Arndt, and Guido Kanschat 
264 1 |c 2021 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a  Veröffentlicht von De Gruyter 11. November 2020 
500 |a Gesehen am 29.09.2021 
520 |a We discuss the efficient implementation of powerful domain decomposition smoothers for multigrid methods for high-order discontinuous Galerkin (DG) finite element methods. In particular, we study the inversion of matrices associated to mesh cells and to the patches around a vertex, respectively, in order to obtain fast local solvers for additive and multiplicative subspace correction methods. The effort of inverting local matrices for tensor product polynomials of degree k is reduced from ⁢ ( k 3 ⁢ d ) {\mathcal{O}(k^{3d})} to ⁢ ( d ⁢ k d + 1 ) {\mathcal{O}(dk^{d+1})} by exploiting the separability of the differential operator and resulting low rank representation of its inverse as a prototype for more general low rank representations in space dimension d . 
650 4 |a Discontinuous Galerkin Finite Element 
650 4 |a Domain Decomposition 
650 4 |a Fast Diagonalization 
650 4 |a Geometric Multigrid 
700 1 |a Arndt, Daniel  |d 1988-  |e VerfasserIn  |0 (DE-588)1151134910  |0 (DE-627)101136851X  |0 (DE-576)497498634  |4 aut 
700 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
773 0 8 |i Enthalten in  |t Computational methods in applied mathematics  |d Berlin : De Gruyter, 2001  |g 21(2021), 3, Seite 709-728  |h Online-Ressource  |w (DE-627)345035380  |w (DE-600)2075629-X  |w (DE-576)347264921  |x 1609-9389  |7 nnas  |a Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods 
773 1 8 |g volume:21  |g year:2021  |g number:3  |g pages:709-728  |g extent:20  |a Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods 
856 4 0 |u https://doi.org/10.1515/cmam-2020-0078  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0078/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210929 
993 |a Article 
994 |a 2021 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
998 |g 1151134910  |a Arndt, Daniel  |m 1151134910:Arndt, Daniel  |d 110000  |e 110000PA1151134910  |k 0/110000/  |p 2 
998 |g 1242118985  |a Witte, Julius  |m 1242118985:Witte, Julius  |d 110000  |e 110000PW1242118985  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1772047392  |e 3982179351 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1772047392","type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Julius Witte, Daniel Arndt, and Guido Kanschat"]},"language":["eng"],"id":{"eki":["1772047392"],"doi":["10.1515/cmam-2020-0078"]},"note":[" Veröffentlicht von De Gruyter 11. November 2020","Gesehen am 29.09.2021"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"relHost":[{"disp":"Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methodsComputational methods in applied mathematics","language":["eng"],"titleAlt":[{"title":"CMAM"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Computational methods in applied mathematics","title_sort":"Computational methods in applied mathematics"}],"part":{"issue":"3","pages":"709-728","text":"21(2021), 3, Seite 709-728","extent":"20","year":"2021","volume":"21"},"id":{"eki":["345035380"],"issn":["1609-9389"],"zdb":["2075629-X"]},"pubHistory":["1.2001 -"],"recId":"345035380","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 29.01.13"],"origin":[{"publisherPlace":"Berlin ; Minsk","dateIssuedKey":"2001","dateIssuedDisp":"2001-","publisher":"De Gruyter ; Institute of Mathematics of the National Academy of Sciences of Belarus"}]}],"title":[{"title_sort":"Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods","title":"Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods"}],"person":[{"role":"aut","display":"Witte, Julius","given":"Julius","family":"Witte"},{"role":"aut","display":"Arndt, Daniel","given":"Daniel","family":"Arndt"},{"family":"Kanschat","given":"Guido","role":"aut","display":"Kanschat, Guido"}],"physDesc":[{"extent":"20 S."}]} 
SRT |a WITTEJULIUFASTTENSOR2021