Deep probabilistic tracking of particles in fluorescence microscopy images

Tracking of particles in temporal fluorescence microscopy image sequences is of fundamental importance to quantify dynamic processes of intracellular structures as well as virus structures. We introduce a probabilistic deep learning approach for fluorescent particle tracking, which is based on a rec...

Full description

Saved in:
Bibliographic Details
Main Authors: Spilger, Roman (Author) , Lee, Ji Young (Author) , Chagin, Vadim O. (Author) , Schermelleh, Lothar (Author) , Cardoso, M. Cristina (Author) , Bartenschlager, Ralf (Author) , Rohr, Karl (Author)
Format: Article (Journal)
Language:English
Published: 8 June 2021
In: Medical image analysis
Year: 2021, Volume: 72, Pages: 1-18
ISSN:1361-8423
DOI:10.1016/j.media.2021.102128
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2021.102128
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1361841521001742
Get full text
Author Notes:Roman Spilger, Ji-Young Lee, Vadim O. Chagin, Lothar Schermelleh, M. Cristina Cardoso, Ralf Bartenschlager, Karl Rohr

MARC

LEADER 00000caa a2200000 c 4500
001 1774132893
003 DE-627
005 20230427033855.0
007 cr uuu---uuuuu
008 211015s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2021.102128  |2 doi 
035 |a (DE-627)1774132893 
035 |a (DE-599)KXP1774132893 
035 |a (OCoLC)1341421947 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Spilger, Roman  |d 1987-  |e VerfasserIn  |0 (DE-588)1207287997  |0 (DE-627)1693482231  |4 aut 
245 1 0 |a Deep probabilistic tracking of particles in fluorescence microscopy images  |c Roman Spilger, Ji-Young Lee, Vadim O. Chagin, Lothar Schermelleh, M. Cristina Cardoso, Ralf Bartenschlager, Karl Rohr 
264 1 |c 8 June 2021 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.10.2021 
520 |a Tracking of particles in temporal fluorescence microscopy image sequences is of fundamental importance to quantify dynamic processes of intracellular structures as well as virus structures. We introduce a probabilistic deep learning approach for fluorescent particle tracking, which is based on a recurrent neural network that mimics classical Bayesian filtering. Compared to previous deep learning methods for particle tracking, our approach takes into account uncertainty, both aleatoric and epistemic uncertainty. Thus, information about the reliability of the computed trajectories is determined. Manual tuning of tracking parameters is not necessary and prior knowledge about the noise statistics is not required. Short and long-term temporal dependencies of individual object dynamics are exploited for state prediction, and assigned detections are used to update the predicted states. For correspondence finding, we introduce a neural network which computes assignment probabilities jointly across multiple detections as well as determines the probabilities of missing detections. Training requires only simulated data and therefore tedious manual annotation of ground truth is not needed. We performed a quantitative performance evaluation based on synthetic and real 2D as well as 3D fluorescence microscopy images. We used image data of the Particle Tracking Challenge as well as real time-lapse fluorescence microscopy images displaying virus structures and chromatin structures. It turned out that our approach yields state-of-the-art results or improves the tracking results compared to previous methods. 
650 4 |a Biomedical imaging 
650 4 |a Deep learning 
650 4 |a Microscopy images 
650 4 |a Tracking 
700 1 |a Lee, Ji Young  |e VerfasserIn  |0 (DE-588)1058274570  |0 (DE-627)79668037X  |0 (DE-576)414323610  |4 aut 
700 1 |a Chagin, Vadim O.  |e VerfasserIn  |4 aut 
700 1 |a Schermelleh, Lothar  |e VerfasserIn  |4 aut 
700 1 |a Cardoso, M. Cristina  |e VerfasserIn  |4 aut 
700 1 |a Bartenschlager, Ralf  |d 1958-  |e VerfasserIn  |0 (DE-588)1058097989  |0 (DE-627)796390509  |0 (DE-576)168706067  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 72(2021), Artikel-ID 102128, Seite 1-18  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Deep probabilistic tracking of particles in fluorescence microscopy images 
773 1 8 |g volume:72  |g year:2021  |g elocationid:102128  |g pages:1-18  |g extent:18  |a Deep probabilistic tracking of particles in fluorescence microscopy images 
856 4 0 |u https://doi.org/10.1016/j.media.2021.102128  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1361841521001742  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211015 
993 |a Article 
994 |a 2021 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |e 160000PR137474466  |e 160100PR137474466  |k 0/160000/  |k 1/160000/160100/  |p 7  |y j 
998 |g 1058097989  |a Bartenschlager, Ralf  |m 1058097989:Bartenschlager, Ralf  |d 910000  |d 911700  |e 910000PB1058097989  |e 911700PB1058097989  |k 0/910000/  |k 1/910000/911700/  |p 6 
998 |g 1058274570  |a Lee, Ji Young  |m 1058274570:Lee, Ji Young  |d 910000  |d 911700  |e 910000PL1058274570  |e 911700PL1058274570  |k 0/910000/  |k 1/910000/911700/  |p 2 
998 |g 1207287997  |a Spilger, Roman  |m 1207287997:Spilger, Roman  |d 700000  |d 716000  |e 700000PS1207287997  |e 716000PS1207287997  |k 0/700000/  |k 1/700000/716000/  |p 1  |x j 
999 |a KXP-PPN1774132893  |e 3990187627 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 15.10.2021"],"person":[{"family":"Spilger","roleDisplay":"VerfasserIn","display":"Spilger, Roman","role":"aut","given":"Roman"},{"roleDisplay":"VerfasserIn","family":"Lee","given":"Ji Young","display":"Lee, Ji Young","role":"aut"},{"roleDisplay":"VerfasserIn","family":"Chagin","given":"Vadim O.","role":"aut","display":"Chagin, Vadim O."},{"roleDisplay":"VerfasserIn","family":"Schermelleh","given":"Lothar","role":"aut","display":"Schermelleh, Lothar"},{"display":"Cardoso, M. Cristina","role":"aut","given":"M. Cristina","family":"Cardoso","roleDisplay":"VerfasserIn"},{"display":"Bartenschlager, Ralf","role":"aut","given":"Ralf","family":"Bartenschlager","roleDisplay":"VerfasserIn"},{"given":"Karl","display":"Rohr, Karl","role":"aut","roleDisplay":"VerfasserIn","family":"Rohr"}],"physDesc":[{"extent":"18 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 16.05.23"],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"1996-","dateIssuedKey":"1996","publisher":"Elsevier Science"}],"titleAlt":[{"title":"Medical image analysis online"}],"id":{"zdb":["1497450-2"],"issn":["1361-8423"],"eki":["306365081"]},"recId":"306365081","title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"disp":"Deep probabilistic tracking of particles in fluorescence microscopy imagesMedical image analysis","part":{"extent":"18","year":"2021","volume":"72","pages":"1-18","text":"72(2021), Artikel-ID 102128, Seite 1-18"},"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1996/97 -"]}],"id":{"doi":["10.1016/j.media.2021.102128"],"eki":["1774132893"]},"origin":[{"dateIssuedDisp":"8 June 2021","dateIssuedKey":"2021"}],"title":[{"title":"Deep probabilistic tracking of particles in fluorescence microscopy images","title_sort":"Deep probabilistic tracking of particles in fluorescence microscopy images"}],"recId":"1774132893","type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"name":{"displayForm":["Roman Spilger, Ji-Young Lee, Vadim O. Chagin, Lothar Schermelleh, M. Cristina Cardoso, Ralf Bartenschlager, Karl Rohr"]}} 
SRT |a SPILGERROMDEEPPROBAB8202