Comparison of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method and the density matrix renormalization group (DMRG) for ground state properties of linear rotor chains

We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies, entanglement entropies, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mainali, Samrit (VerfasserIn) , Gatti, Fabien (VerfasserIn) , Iouchtchenko, Dmitri (VerfasserIn) , Roy, Pierre-Nicholas (VerfasserIn) , Meyer, Hans-Dieter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 April 2021
In: The journal of chemical physics
Year: 2021, Jahrgang: 154, Heft: 17, Pages: 1-11
ISSN:1089-7690
DOI:10.1063/5.0047090
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1063/5.0047090
Verlag, lizenzpflichtig, Volltext: https://aip.scitation.org/doi/10.1063/5.0047090
Volltext
Verfasserangaben:Samrit Mainali, Fabien Gatti, Dmitri Iouchtchenko, Pierre-Nicholas Roy, and Hans-Dieter Meyer
Beschreibung
Zusammenfassung:We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies, entanglement entropies, and orientational correlations that are in agreement with the Density Matrix Renormalization Group (DMRG), which has been previously used for this system. We find that the entropies calculated by ML-MCTDH for larger system sizes contain nonmonotonicity, as expected in the vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that this effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is not sensitive to the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case, ML-MCTDH (as implemented in the Heidelberg MCTDH package) requires more computational time and memory, although the requirements are still within reach of commodity hardware. The numerical convergence and computational demand of two practical implementations of ML-MCTDH and DMRG are presented in detail for various combinations of system parameters.
Beschreibung:Gesehen am 18.10.2021
Beschreibung:Online Resource
ISSN:1089-7690
DOI:10.1063/5.0047090