Glassy quantum dynamics of disordered Ising spins

We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $\alpha \geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lohmann, Philipp (VerfasserIn) , Franz, Titus (VerfasserIn) , Geier, Sebastian (VerfasserIn) , Salzinger, Andre (VerfasserIn) , Tebben, Annika (VerfasserIn) , Hainaut, Clément (VerfasserIn) , Zürn, Gerhard (VerfasserIn) , Weidemüller, Matthias (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: July 30, 2021
In: Arxiv
Year: 2021, Pages: 1-8
Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2104.00349
Volltext
Verfasserangaben:P. Schultzen, T. Franz, S. Geier, A. Salzinger, A. Tebben, C. Hainaut, G. Zürn, M. Weidemüller, and M. Gärttner
Beschreibung
Zusammenfassung:We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $\alpha \geq d$ we analytically find a stretched exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch-power $\beta = d/\alpha$ in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a loss of single-spin purity which signifies the build-up of entanglement. The emergence of glassy dynamics in the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched exponential law is explained by a scale-invariant distribution of time scales, to both integrable and non-integrable quantum systems.
Beschreibung:Gesehen am 21.10.2021
Beschreibung:Online Resource