En route towards the control of luminescent, optically-active 3D architectures

π-Extended systems are key components for the development of future organic electronic technologies. While conceiving molecules with improved properties is fundamental for the evolution of materials science, keeping control over the 3D arrangement of molecules represents an ever-expanding challenge....

Full description

Saved in:
Bibliographic Details
Main Authors: Hindenberg, Philip (Author) , Rominger, Frank (Author) , Romero-Nieto, Carlos (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Angewandte Chemie. International edition
Year: 2021, Volume: 60, Issue: 2, Pages: 766-773
ISSN:1521-3773
DOI:10.1002/anie.202011368
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/anie.202011368
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202011368
Get full text
Author Notes:Philip Hindenberg, Frank Rominger, and Carlos Romero-Nieto
Description
Summary:π-Extended systems are key components for the development of future organic electronic technologies. While conceiving molecules with improved properties is fundamental for the evolution of materials science, keeping control over the 3D arrangement of molecules represents an ever-expanding challenge. Herein, a synthetic protocol to replace carbon atoms of π-systems by dissymmetric phosphorus atoms is reported; in particular, it allowed for conceiving new fused phosphapyrene derivatives with improved properties. The presence of dissymmetric phosphorus atoms precluded the formation of excimers. X-ray diffraction revealed that, meanwhile, strong intermolecular interactions are taking place in the solid state. The phosphapyrenes photoluminesce in the visible region with high quantum yields; importantly, they are CD-active. In addition, the unique non-planar features of phosphorus atoms allowed for the control of the 3D arrangement of molecules, rendering lemniscate-like structures. Based on our discoveries, we envisage the possibility to construct higher-order, chiral 3D architectures from larger phosphorus-containing π-systems.
Item Description:First published: 28 September 2020
Gesehen am 25.10.2021
Physical Description:Online Resource
ISSN:1521-3773
DOI:10.1002/anie.202011368