Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review

Background - Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown grea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuntz, Sara (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Jutzi, Tanja (VerfasserIn) , Höhn, Julia (VerfasserIn) , Kiehl, Lennard (VerfasserIn) , Hekler, Achim (VerfasserIn) , Alwers, Elizabeth (VerfasserIn) , Kalle, Christof von (VerfasserIn) , Fröhling, Stefan (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Brenner, Hermann (VerfasserIn) , Hoffmeister, Michael (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 August 2021
In: European journal of cancer
Year: 2021, Jahrgang: 155, Pages: 200-215
ISSN:1879-0852
DOI:10.1016/j.ejca.2021.07.012
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejca.2021.07.012
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804921004603
Volltext
Verfasserangaben:Sara Kuntz, Eva Krieghoff-Henning, Jakob N. Kather, Tanja Jutzi, Julia Höhn, Lennard Kiehl, Achim Hekler, Elizabeth Alwers, Christof von Kalle, Stefan Fröhling, Jochen S. Utikal, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1775139018
003 DE-627
005 20220820063411.0
007 cr uuu---uuuuu
008 211025s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2021.07.012  |2 doi 
035 |a (DE-627)1775139018 
035 |a (DE-599)KXP1775139018 
035 |a (OCoLC)1341421986 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kuntz, Sara  |d 1984-  |e VerfasserIn  |0 (DE-588)1124269797  |0 (DE-627)877984786  |0 (DE-576)482422823  |4 aut 
245 1 0 |a Gastrointestinal cancer classification and prognostication from histology using deep learning  |b Systematic review  |c Sara Kuntz, Eva Krieghoff-Henning, Jakob N. Kather, Tanja Jutzi, Julia Höhn, Lennard Kiehl, Achim Hekler, Elizabeth Alwers, Christof von Kalle, Stefan Fröhling, Jochen S. Utikal, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker 
264 1 |c 11 August 2021 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.10.2021 
520 |a Background - Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology. - Methods - Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility. - Results - Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation. - Conclusions - Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices. 
650 4 |a Artificial intelligence 
650 4 |a Colorectal cancer 
650 4 |a Convolutional neural network 
650 4 |a Deep learning 
650 4 |a Digital biomarker 
650 4 |a Esophageal cancer 
650 4 |a Gastric cancer 
650 4 |a Gastrointestinal cancer 
650 4 |a Pathology 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Jutzi, Tanja  |e VerfasserIn  |0 (DE-588)1234604825  |0 (DE-627)1759447528  |4 aut 
700 1 |a Höhn, Julia  |e VerfasserIn  |0 (DE-588)1236930169  |0 (DE-627)1762751291  |4 aut 
700 1 |a Kiehl, Lennard  |e VerfasserIn  |0 (DE-588)1250101042  |0 (DE-627)1786951223  |4 aut 
700 1 |a Hekler, Achim  |e VerfasserIn  |0 (DE-588)1196829314  |0 (DE-627)1678721344  |4 aut 
700 1 |a Alwers, Elizabeth  |e VerfasserIn  |0 (DE-588)1181909058  |0 (DE-627)1662464614  |4 aut 
700 1 |a Kalle, Christof von  |d 1962-  |e VerfasserIn  |0 (DE-588)1036481115  |0 (DE-627)75107926X  |0 (DE-576)168957396  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 155(2021), Seite 200-215  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Gastrointestinal cancer classification and prognostication from histology using deep learning Systematic review 
773 1 8 |g volume:155  |g year:2021  |g pages:200-215  |g extent:16  |a Gastrointestinal cancer classification and prognostication from histology using deep learning Systematic review 
856 4 0 |u https://doi.org/10.1016/j.ejca.2021.07.012  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804921004603  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211025 
993 |a Article 
994 |a 2021 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 14  |y j 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 13 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 12 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 11 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 10 
998 |g 1036481115  |a Kalle, Christof von  |m 1036481115:Kalle, Christof von  |d 50000  |e 50000PK1036481115  |k 0/50000/  |p 9 
998 |g 1181909058  |a Alwers, Elizabeth  |m 1181909058:Alwers, Elizabeth  |d 50000  |e 50000PA1181909058  |k 0/50000/  |p 8 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 3 
999 |a KXP-PPN1775139018  |e 3995838472 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1775139018","physDesc":[{"extent":"16 S."}],"title":[{"title":"Gastrointestinal cancer classification and prognostication from histology using deep learning","title_sort":"Gastrointestinal cancer classification and prognostication from histology using deep learning","subtitle":"Systematic review"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 25.10.2021"],"origin":[{"dateIssuedDisp":"11 August 2021","dateIssuedKey":"2021"}],"relHost":[{"disp":"Gastrointestinal cancer classification and prognostication from histology using deep learning Systematic reviewEuropean journal of cancer","recId":"266883400","title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"origin":[{"publisher":"Elsevier ; Pergamon Press","dateIssuedKey":"1992","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1992-"}],"id":{"zdb":["1468190-0"],"eki":["266883400"],"issn":["1879-0852"]},"part":{"pages":"200-215","year":"2021","volume":"155","text":"155(2021), Seite 200-215","extent":"16"},"pubHistory":["28.1992 -"],"titleAlt":[{"title":"EJC online"}],"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"role":"isb","display":"European Association for Cancer Research"},{"role":"isb","display":"European School of Oncology"}]}],"person":[{"family":"Kuntz","given":"Sara","role":"aut","display":"Kuntz, Sara"},{"family":"Krieghoff-Henning","given":"Eva","role":"aut","display":"Krieghoff-Henning, Eva"},{"display":"Kather, Jakob Nikolas","role":"aut","given":"Jakob Nikolas","family":"Kather"},{"given":"Tanja","role":"aut","family":"Jutzi","display":"Jutzi, Tanja"},{"role":"aut","given":"Julia","family":"Höhn","display":"Höhn, Julia"},{"family":"Kiehl","given":"Lennard","role":"aut","display":"Kiehl, Lennard"},{"role":"aut","given":"Achim","family":"Hekler","display":"Hekler, Achim"},{"display":"Alwers, Elizabeth","family":"Alwers","role":"aut","given":"Elizabeth"},{"family":"Kalle","role":"aut","given":"Christof von","display":"Kalle, Christof von"},{"display":"Fröhling, Stefan","family":"Fröhling","given":"Stefan","role":"aut"},{"family":"Utikal","given":"Jochen","role":"aut","display":"Utikal, Jochen"},{"display":"Brenner, Hermann","family":"Brenner","given":"Hermann","role":"aut"},{"display":"Hoffmeister, Michael","given":"Michael","role":"aut","family":"Hoffmeister"},{"display":"Brinker, Titus Josef","family":"Brinker","given":"Titus Josef","role":"aut"}],"id":{"eki":["1775139018"],"doi":["10.1016/j.ejca.2021.07.012"]},"name":{"displayForm":["Sara Kuntz, Eva Krieghoff-Henning, Jakob N. Kather, Tanja Jutzi, Julia Höhn, Lennard Kiehl, Achim Hekler, Elizabeth Alwers, Christof von Kalle, Stefan Fröhling, Jochen S. Utikal, Hermann Brenner, Michael Hoffmeister, Titus J. Brinker"]}} 
SRT |a KUNTZSARAKGASTROINTE1120