A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors

There are various reasons why a naive analog of the Maeda conjecture has to fail for Drinfeld cusp forms. Focussing on double cusp forms and using the link found by Teitelbaum between Drinfeld cusp forms and certain harmonic cochains, we observed a while ago that all obvious counterexamples disappea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Böckle, Gebhard (VerfasserIn) , Gräf, Peter Mathias (VerfasserIn) , Perkins, Rudolph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07 June 2021
In: Research in number theory
Year: 2021, Jahrgang: 7, Heft: 3, Pages: 1-50
ISSN:2363-9555
DOI:10.1007/s40993-021-00254-0
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s40993-021-00254-0
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40993-021-00254-0
Volltext
Verfasserangaben:Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins

MARC

LEADER 00000caa a2200000 c 4500
001 1775703991
003 DE-627
005 20240414193528.0
007 cr uuu---uuuuu
008 211029s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s40993-021-00254-0  |2 doi 
035 |a (DE-627)1775703991 
035 |a (DE-599)KXP1775703991 
035 |a (OCoLC)1341422249 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Böckle, Gebhard  |d 1964-  |e VerfasserIn  |0 (DE-588)1052651798  |0 (DE-627)788915908  |0 (DE-576)408431660  |4 aut 
245 1 2 |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors  |c Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins 
264 1 |c 07 June 2021 
300 |a 50 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.10.2021 
520 |a There are various reasons why a naive analog of the Maeda conjecture has to fail for Drinfeld cusp forms. Focussing on double cusp forms and using the link found by Teitelbaum between Drinfeld cusp forms and certain harmonic cochains, we observed a while ago that all obvious counterexamples disappear for certain Hecke-invariant subquotients of spaces of Drinfeld cusp forms of fixed weight, which can be defined naturally via representation theory. The present work extends Teitelbaum’s isomorphism to an adelic setting and to arbitrary levels, it makes precise the impact of representation theory, it relates certain intertwining maps to hyperderivatives of Bosser-Pellarin, and it begins an investigation into dimension formulas for the subquotients mentioned above. We end with some numerical data for $$A={\mathbb {F}}_3[t]$$that displays a new obstruction to an analog of a Maeda conjecture by discovering a conjecturally infinite supply of $${\mathbb {F}}_3(t)$$-rational eigenforms with combinatorially given (conjectural) Hecke eigenvalues at the prime t. 
700 1 |a Gräf, Peter Mathias  |d 1990-  |e VerfasserIn  |0 (DE-588)1198896574  |0 (DE-627)1681067781  |4 aut 
700 1 |a Perkins, Rudolph  |d 1985-  |e VerfasserIn  |0 (DE-588)1179132238  |0 (DE-627)1066525277  |0 (DE-576)518024121  |4 aut 
773 0 8 |i Enthalten in  |t Research in number theory  |d Heidelberg : Springer, 2015  |g 7(2021), 3, Artikel-ID 44, Seite 1-50  |h Online-Ressource  |w (DE-627)833507990  |w (DE-600)2831074-3  |w (DE-576)443329419  |x 2363-9555  |7 nnas  |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors 
773 1 8 |g volume:7  |g year:2021  |g number:3  |g elocationid:44  |g pages:1-50  |g extent:50  |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors 
856 4 0 |u https://doi.org/10.1007/s40993-021-00254-0  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s40993-021-00254-0  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20211029 
993 |a Article 
994 |a 2021 
998 |g 1198896574  |a Gräf, Peter Mathias  |m 1198896574:Gräf, Peter Mathias  |d 700000  |d 708000  |e 700000PG1198896574  |e 708000PG1198896574  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1052651798  |a Böckle, Gebhard  |m 1052651798:Böckle, Gebhard  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PB1052651798  |e 110100PB1052651798  |e 110000PB1052651798  |e 110400PB1052651798  |e 700000PB1052651798  |e 708000PB1052651798  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1775703991  |e 3997224242 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors","title_sort":"Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors"}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"07 June 2021"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"extent":"50","volume":"7","pages":"1-50","text":"7(2021), 3, Artikel-ID 44, Seite 1-50","issue":"3","year":"2021"},"disp":"A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactorsResearch in number theory","language":["eng"],"title":[{"title_sort":"Research in number theory","title":"Research in number theory","subtitle":"a SpringerOpen journal"}],"origin":[{"publisher":"Springer","publisherPlace":"Heidelberg","dateIssuedKey":"2015","dateIssuedDisp":"2015-"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 27.08.15"],"pubHistory":["1.2015 -"],"id":{"zdb":["2831074-3"],"issn":["2363-9555"],"eki":["833507990"]},"recId":"833507990"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1775703991"],"doi":["10.1007/s40993-021-00254-0"]},"recId":"1775703991","physDesc":[{"extent":"50 S."}],"note":["Gesehen am 29.10.2021"],"person":[{"family":"Böckle","given":"Gebhard","roleDisplay":"VerfasserIn","display":"Böckle, Gebhard","role":"aut"},{"role":"aut","display":"Gräf, Peter Mathias","roleDisplay":"VerfasserIn","family":"Gräf","given":"Peter Mathias"},{"roleDisplay":"VerfasserIn","display":"Perkins, Rudolph","role":"aut","given":"Rudolph","family":"Perkins"}],"name":{"displayForm":["Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins"]}} 
SRT |a BOECKLEGEBHECKEEQUIV0720