A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors
There are various reasons why a naive analog of the Maeda conjecture has to fail for Drinfeld cusp forms. Focussing on double cusp forms and using the link found by Teitelbaum between Drinfeld cusp forms and certain harmonic cochains, we observed a while ago that all obvious counterexamples disappea...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
07 June 2021
|
| In: |
Research in number theory
Year: 2021, Jahrgang: 7, Heft: 3, Pages: 1-50 |
| ISSN: | 2363-9555 |
| DOI: | 10.1007/s40993-021-00254-0 |
| Online-Zugang: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s40993-021-00254-0 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40993-021-00254-0 |
| Verfasserangaben: | Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1775703991 | ||
| 003 | DE-627 | ||
| 005 | 20240414193528.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211029s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s40993-021-00254-0 |2 doi | |
| 035 | |a (DE-627)1775703991 | ||
| 035 | |a (DE-599)KXP1775703991 | ||
| 035 | |a (OCoLC)1341422249 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Böckle, Gebhard |d 1964- |e VerfasserIn |0 (DE-588)1052651798 |0 (DE-627)788915908 |0 (DE-576)408431660 |4 aut | |
| 245 | 1 | 2 | |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors |c Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins |
| 264 | 1 | |c 07 June 2021 | |
| 300 | |a 50 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.10.2021 | ||
| 520 | |a There are various reasons why a naive analog of the Maeda conjecture has to fail for Drinfeld cusp forms. Focussing on double cusp forms and using the link found by Teitelbaum between Drinfeld cusp forms and certain harmonic cochains, we observed a while ago that all obvious counterexamples disappear for certain Hecke-invariant subquotients of spaces of Drinfeld cusp forms of fixed weight, which can be defined naturally via representation theory. The present work extends Teitelbaum’s isomorphism to an adelic setting and to arbitrary levels, it makes precise the impact of representation theory, it relates certain intertwining maps to hyperderivatives of Bosser-Pellarin, and it begins an investigation into dimension formulas for the subquotients mentioned above. We end with some numerical data for $$A={\mathbb {F}}_3[t]$$that displays a new obstruction to an analog of a Maeda conjecture by discovering a conjecturally infinite supply of $${\mathbb {F}}_3(t)$$-rational eigenforms with combinatorially given (conjectural) Hecke eigenvalues at the prime t. | ||
| 700 | 1 | |a Gräf, Peter Mathias |d 1990- |e VerfasserIn |0 (DE-588)1198896574 |0 (DE-627)1681067781 |4 aut | |
| 700 | 1 | |a Perkins, Rudolph |d 1985- |e VerfasserIn |0 (DE-588)1179132238 |0 (DE-627)1066525277 |0 (DE-576)518024121 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Research in number theory |d Heidelberg : Springer, 2015 |g 7(2021), 3, Artikel-ID 44, Seite 1-50 |h Online-Ressource |w (DE-627)833507990 |w (DE-600)2831074-3 |w (DE-576)443329419 |x 2363-9555 |7 nnas |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors |
| 773 | 1 | 8 | |g volume:7 |g year:2021 |g number:3 |g elocationid:44 |g pages:1-50 |g extent:50 |a A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s40993-021-00254-0 |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s40993-021-00254-0 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211029 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1198896574 |a Gräf, Peter Mathias |m 1198896574:Gräf, Peter Mathias |d 700000 |d 708000 |e 700000PG1198896574 |e 708000PG1198896574 |k 0/700000/ |k 1/700000/708000/ |p 2 | ||
| 998 | |g 1052651798 |a Böckle, Gebhard |m 1052651798:Böckle, Gebhard |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 708000 |e 110000PB1052651798 |e 110100PB1052651798 |e 110000PB1052651798 |e 110400PB1052651798 |e 700000PB1052651798 |e 708000PB1052651798 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1775703991 |e 3997224242 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors","title_sort":"Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors"}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"07 June 2021"}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"extent":"50","volume":"7","pages":"1-50","text":"7(2021), 3, Artikel-ID 44, Seite 1-50","issue":"3","year":"2021"},"disp":"A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactorsResearch in number theory","language":["eng"],"title":[{"title_sort":"Research in number theory","title":"Research in number theory","subtitle":"a SpringerOpen journal"}],"origin":[{"publisher":"Springer","publisherPlace":"Heidelberg","dateIssuedKey":"2015","dateIssuedDisp":"2015-"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 27.08.15"],"pubHistory":["1.2015 -"],"id":{"zdb":["2831074-3"],"issn":["2363-9555"],"eki":["833507990"]},"recId":"833507990"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1775703991"],"doi":["10.1007/s40993-021-00254-0"]},"recId":"1775703991","physDesc":[{"extent":"50 S."}],"note":["Gesehen am 29.10.2021"],"person":[{"family":"Böckle","given":"Gebhard","roleDisplay":"VerfasserIn","display":"Böckle, Gebhard","role":"aut"},{"role":"aut","display":"Gräf, Peter Mathias","roleDisplay":"VerfasserIn","family":"Gräf","given":"Peter Mathias"},{"roleDisplay":"VerfasserIn","display":"Perkins, Rudolph","role":"aut","given":"Rudolph","family":"Perkins"}],"name":{"displayForm":["Gebhard Böckle, Peter Mathias Gräf and Rudolph Perkins"]}} | ||
| SRT | |a BOECKLEGEBHECKEEQUIV0720 | ||