Large-scale geometry of the saddle connection graph

We prove that the saddle connection graph associated to any half-translation surface is 4-hyperbolic and uniformly quasi-isometric to the regular countably infinite-valent tree. Consequently, the saddle connection graph is not quasi-isometrically rigid. We also characterise its Gromov boundary as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Disarlo, Valentina (VerfasserIn) , Pan, Huiping (VerfasserIn) , Randecker, Anja (VerfasserIn) , Tang, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 18, 2021
In: Transactions of the American Mathematical Society
Year: 2021, Jahrgang: 374, Heft: 11, Pages: 8101-8129
ISSN:1088-6850
DOI:10.1090/tran/8448
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1090/tran/8448
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2021-374-11/S0002-9947-2021-08448-2/
Volltext
Verfasserangaben:Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang

MARC

LEADER 00000caa a2200000 c 4500
001 1775705099
003 DE-627
005 20220820065025.0
007 cr uuu---uuuuu
008 211029s2021 xx |||||o 00| ||eng c
024 7 |a 10.1090/tran/8448  |2 doi 
035 |a (DE-627)1775705099 
035 |a (DE-599)KXP1775705099 
035 |a (OCoLC)1341422401 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Disarlo, Valentina  |e VerfasserIn  |0 (DE-588)1154551067  |0 (DE-627)1015937667  |0 (DE-576)501098070  |4 aut 
245 1 0 |a Large-scale geometry of the saddle connection graph  |c Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang 
264 1 |c August 18, 2021 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.10.2021 
520 |a We prove that the saddle connection graph associated to any half-translation surface is 4-hyperbolic and uniformly quasi-isometric to the regular countably infinite-valent tree. Consequently, the saddle connection graph is not quasi-isometrically rigid. We also characterise its Gromov boundary as the set of straight foliations with no saddle connections. In our arguments, we give a generalisation of the unicorn paths in the arc graph which may be of independent interest. 
700 1 |a Pan, Huiping  |e VerfasserIn  |4 aut 
700 1 |a Randecker, Anja  |e VerfasserIn  |0 (DE-588)1031933719  |0 (DE-627)737805277  |0 (DE-576)379636166  |4 aut 
700 1 |a Tang, Robert  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a American Mathematical Society  |t Transactions of the American Mathematical Society  |d Providence, RI : Soc., 1900  |g 374(2021), 11, Seite 8101-8129  |h Online-Ressource  |w (DE-627)269247351  |w (DE-600)1474637-2  |w (DE-576)079876110  |x 1088-6850  |7 nnas 
773 1 8 |g volume:374  |g year:2021  |g number:11  |g pages:8101-8129  |g extent:29  |a Large-scale geometry of the saddle connection graph 
856 4 0 |u https://doi.org/10.1090/tran/8448  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.ams.org/tran/2021-374-11/S0002-9947-2021-08448-2/  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211029 
993 |a Article 
994 |a 2021 
998 |g 1031933719  |a Randecker, Anja  |m 1031933719:Randecker, Anja  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PR1031933719  |e 110100PR1031933719  |e 110000PR1031933719  |e 110400PR1031933719  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 3 
998 |g 1154551067  |a Disarlo, Valentina  |m 1154551067:Disarlo, Valentina  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PD1154551067  |e 110100PD1154551067  |e 110000PD1154551067  |e 110400PD1154551067  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1775705099  |e 3997226520 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 29.10.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1775705099","person":[{"role":"aut","display":"Disarlo, Valentina","roleDisplay":"VerfasserIn","given":"Valentina","family":"Disarlo"},{"display":"Pan, Huiping","roleDisplay":"VerfasserIn","role":"aut","family":"Pan","given":"Huiping"},{"given":"Anja","family":"Randecker","role":"aut","roleDisplay":"VerfasserIn","display":"Randecker, Anja"},{"family":"Tang","given":"Robert","roleDisplay":"VerfasserIn","display":"Tang, Robert","role":"aut"}],"title":[{"title_sort":"Large-scale geometry of the saddle connection graph","title":"Large-scale geometry of the saddle connection graph"}],"physDesc":[{"extent":"29 S."}],"relHost":[{"origin":[{"publisher":"Soc.","dateIssuedKey":"1900","dateIssuedDisp":"1900-","publisherPlace":"Providence, RI"}],"id":{"issn":["1088-6850"],"zdb":["1474637-2"],"eki":["269247351"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Transactions of the American Mathematical Society","title_sort":"Transactions of the American Mathematical Society"}],"disp":"American Mathematical SocietyTransactions of the American Mathematical Society","note":["Gesehen am 09.07.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"American Mathematical Society"}],"recId":"269247351","pubHistory":["1.1900 -"],"part":{"pages":"8101-8129","issue":"11","year":"2021","extent":"29","volume":"374","text":"374(2021), 11, Seite 8101-8129"}}],"name":{"displayForm":["Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"August 18, 2021"}],"id":{"eki":["1775705099"],"doi":["10.1090/tran/8448"]}} 
SRT |a DISARLOVALLARGESCALE1820