Large-scale geometry of the saddle connection graph
We prove that the saddle connection graph associated to any half-translation surface is 4-hyperbolic and uniformly quasi-isometric to the regular countably infinite-valent tree. Consequently, the saddle connection graph is not quasi-isometrically rigid. We also characterise its Gromov boundary as th...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
August 18, 2021
|
| In: |
Transactions of the American Mathematical Society
Year: 2021, Jahrgang: 374, Heft: 11, Pages: 8101-8129 |
| ISSN: | 1088-6850 |
| DOI: | 10.1090/tran/8448 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1090/tran/8448 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2021-374-11/S0002-9947-2021-08448-2/ |
| Verfasserangaben: | Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1775705099 | ||
| 003 | DE-627 | ||
| 005 | 20220820065025.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211029s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1090/tran/8448 |2 doi | |
| 035 | |a (DE-627)1775705099 | ||
| 035 | |a (DE-599)KXP1775705099 | ||
| 035 | |a (OCoLC)1341422401 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Disarlo, Valentina |e VerfasserIn |0 (DE-588)1154551067 |0 (DE-627)1015937667 |0 (DE-576)501098070 |4 aut | |
| 245 | 1 | 0 | |a Large-scale geometry of the saddle connection graph |c Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang |
| 264 | 1 | |c August 18, 2021 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.10.2021 | ||
| 520 | |a We prove that the saddle connection graph associated to any half-translation surface is 4-hyperbolic and uniformly quasi-isometric to the regular countably infinite-valent tree. Consequently, the saddle connection graph is not quasi-isometrically rigid. We also characterise its Gromov boundary as the set of straight foliations with no saddle connections. In our arguments, we give a generalisation of the unicorn paths in the arc graph which may be of independent interest. | ||
| 700 | 1 | |a Pan, Huiping |e VerfasserIn |4 aut | |
| 700 | 1 | |a Randecker, Anja |e VerfasserIn |0 (DE-588)1031933719 |0 (DE-627)737805277 |0 (DE-576)379636166 |4 aut | |
| 700 | 1 | |a Tang, Robert |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a American Mathematical Society |t Transactions of the American Mathematical Society |d Providence, RI : Soc., 1900 |g 374(2021), 11, Seite 8101-8129 |h Online-Ressource |w (DE-627)269247351 |w (DE-600)1474637-2 |w (DE-576)079876110 |x 1088-6850 |7 nnas |
| 773 | 1 | 8 | |g volume:374 |g year:2021 |g number:11 |g pages:8101-8129 |g extent:29 |a Large-scale geometry of the saddle connection graph |
| 856 | 4 | 0 | |u https://doi.org/10.1090/tran/8448 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.ams.org/tran/2021-374-11/S0002-9947-2021-08448-2/ |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211029 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1031933719 |a Randecker, Anja |m 1031933719:Randecker, Anja |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PR1031933719 |e 110100PR1031933719 |e 110000PR1031933719 |e 110400PR1031933719 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 3 | ||
| 998 | |g 1154551067 |a Disarlo, Valentina |m 1154551067:Disarlo, Valentina |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PD1154551067 |e 110100PD1154551067 |e 110000PD1154551067 |e 110400PD1154551067 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1775705099 |e 3997226520 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 29.10.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1775705099","person":[{"role":"aut","display":"Disarlo, Valentina","roleDisplay":"VerfasserIn","given":"Valentina","family":"Disarlo"},{"display":"Pan, Huiping","roleDisplay":"VerfasserIn","role":"aut","family":"Pan","given":"Huiping"},{"given":"Anja","family":"Randecker","role":"aut","roleDisplay":"VerfasserIn","display":"Randecker, Anja"},{"family":"Tang","given":"Robert","roleDisplay":"VerfasserIn","display":"Tang, Robert","role":"aut"}],"title":[{"title_sort":"Large-scale geometry of the saddle connection graph","title":"Large-scale geometry of the saddle connection graph"}],"physDesc":[{"extent":"29 S."}],"relHost":[{"origin":[{"publisher":"Soc.","dateIssuedKey":"1900","dateIssuedDisp":"1900-","publisherPlace":"Providence, RI"}],"id":{"issn":["1088-6850"],"zdb":["1474637-2"],"eki":["269247351"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Transactions of the American Mathematical Society","title_sort":"Transactions of the American Mathematical Society"}],"disp":"American Mathematical SocietyTransactions of the American Mathematical Society","note":["Gesehen am 09.07.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"American Mathematical Society"}],"recId":"269247351","pubHistory":["1.1900 -"],"part":{"pages":"8101-8129","issue":"11","year":"2021","extent":"29","volume":"374","text":"374(2021), 11, Seite 8101-8129"}}],"name":{"displayForm":["Valentina Disarlo, Huiping Pan, Anja Randecker, and Robert Tang"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"August 18, 2021"}],"id":{"eki":["1775705099"],"doi":["10.1090/tran/8448"]}} | ||
| SRT | |a DISARLOVALLARGESCALE1820 | ||