The adic tame site
For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Documenta mathematica
Year: 2021, Jahrgang: 26, Pages: 873-945 |
| ISSN: | 1431-0643 |
| DOI: | 10.25537/dm.2021v26.873-945 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2021v26.873-945 Verlag, lizenzpflichtig, Volltext: https://elibm.org/article/10012113 |
| Verfasserangaben: | Katharina Hübner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1775706362 | ||
| 003 | DE-627 | ||
| 005 | 20220820065038.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211029s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.25537/dm.2021v26.873-945 |2 doi | |
| 035 | |a (DE-627)1775706362 | ||
| 035 | |a (DE-599)KXP1775706362 | ||
| 035 | |a (OCoLC)1341422286 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hübner, Katharina |e VerfasserIn |0 (DE-588)1027203132 |0 (DE-627)728577003 |0 (DE-576)372589952 |4 aut | |
| 245 | 1 | 4 | |a The adic tame site |c Katharina Hübner |
| 264 | 1 | |c 2021 | |
| 300 | |a 73 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.10.2021 | ||
| 520 | |a For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and compare its fundamental group with the conventional tame fundamental group. Finally, assuming resolution of singularities, for a regular scheme X over a base scheme S of characteristic p>0 we prove a cohomological purity theorem for the constant sheaf Z/pZ on Spa(X,S)t. As a corollary we obtain homotopy invariance for the tame cohomology groups of Spa(X,S). | ||
| 773 | 0 | 8 | |i Enthalten in |t Documenta mathematica |d Berlin, Germany : EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin, 1996 |g 26(2021), Seite 873-945 |h Online-Ressource |w (DE-627)266882536 |w (DE-600)1468097-X |w (DE-576)281189838 |x 1431-0643 |7 nnas |a The adic tame site |
| 773 | 1 | 8 | |g volume:26 |g year:2021 |g pages:873-945 |g extent:73 |a The adic tame site |
| 856 | 4 | 0 | |u https://doi.org/10.25537/dm.2021v26.873-945 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://elibm.org/article/10012113 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211029 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1027203132 |a Hübner, Katharina |m 1027203132:Hübner, Katharina |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PH1027203132 |e 110100PH1027203132 |e 110000PH1027203132 |e 110400PH1027203132 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1775706362 |e 3997230323 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Katharina Hübner"]},"id":{"eki":["1775706362"],"doi":["10.25537/dm.2021v26.873-945"]},"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"relHost":[{"title":[{"title":"Documenta mathematica","title_sort":"Documenta mathematica"}],"part":{"extent":"73","text":"26(2021), Seite 873-945","volume":"26","pages":"873-945","year":"2021"},"titleAlt":[{"title":"Journal der Deutschen Mathematiker-Vereinigung"},{"title":"Journal der Deutschen Mathematiker-Vereinigung"}],"pubHistory":["1.1996 -"],"recId":"266882536","language":["ger"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Deutsche Mathematiker-Vereinigung","role":"isb"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The adic tame siteDocumenta mathematica","note":["Gesehen am 21.06.2019"],"id":{"issn":["1431-0643"],"zdb":["1468097-X"],"eki":["266882536"]},"origin":[{"publisherPlace":"Berlin, Germany ; Berlin","dateIssuedDisp":"1996-","dateIssuedKey":"1996","publisher":"EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin ; Deutsche Mathematiker-Vereinigung e.V."}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"73 S."}],"person":[{"role":"aut","display":"Hübner, Katharina","roleDisplay":"VerfasserIn","given":"Katharina","family":"Hübner"}],"title":[{"title":"The adic tame site","title_sort":"adic tame site"}],"language":["eng"],"recId":"1775706362","note":["Gesehen am 29.10.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a HUEBNERKATADICTAMESI2021 | ||