The adic tame site
For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2021
|
| In: |
Documenta mathematica
Year: 2021, Volume: 26, Pages: 873-945 |
| ISSN: | 1431-0643 |
| DOI: | 10.25537/dm.2021v26.873-945 |
| Online Access: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2021v26.873-945 Verlag, lizenzpflichtig, Volltext: https://elibm.org/article/10012113 |
| Author Notes: | Katharina Hübner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1775706362 | ||
| 003 | DE-627 | ||
| 005 | 20220820065038.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211029s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.25537/dm.2021v26.873-945 |2 doi | |
| 035 | |a (DE-627)1775706362 | ||
| 035 | |a (DE-599)KXP1775706362 | ||
| 035 | |a (OCoLC)1341422286 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hübner, Katharina |e VerfasserIn |0 (DE-588)1027203132 |0 (DE-627)728577003 |0 (DE-576)372589952 |4 aut | |
| 245 | 1 | 4 | |a The adic tame site |c Katharina Hübner |
| 264 | 1 | |c 2021 | |
| 300 | |a 73 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.10.2021 | ||
| 520 | |a For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and compare its fundamental group with the conventional tame fundamental group. Finally, assuming resolution of singularities, for a regular scheme X over a base scheme S of characteristic p>0 we prove a cohomological purity theorem for the constant sheaf Z/pZ on Spa(X,S)t. As a corollary we obtain homotopy invariance for the tame cohomology groups of Spa(X,S). | ||
| 773 | 0 | 8 | |i Enthalten in |t Documenta mathematica |d Berlin, Germany : EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin, 1996 |g 26(2021), Seite 873-945 |h Online-Ressource |w (DE-627)266882536 |w (DE-600)1468097-X |w (DE-576)281189838 |x 1431-0643 |7 nnas |a The adic tame site |
| 773 | 1 | 8 | |g volume:26 |g year:2021 |g pages:873-945 |g extent:73 |a The adic tame site |
| 856 | 4 | 0 | |u https://doi.org/10.25537/dm.2021v26.873-945 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://elibm.org/article/10012113 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211029 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1027203132 |a Hübner, Katharina |m 1027203132:Hübner, Katharina |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PH1027203132 |e 110100PH1027203132 |e 110000PH1027203132 |e 110400PH1027203132 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1775706362 |e 3997230323 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"73 S."}],"relHost":[{"recId":"266882536","id":{"issn":["1431-0643"],"eki":["266882536"],"zdb":["1468097-X"]},"pubHistory":["1.1996 -"],"part":{"extent":"73","text":"26(2021), Seite 873-945","volume":"26","pages":"873-945","year":"2021"},"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Journal der Deutschen Mathematiker-Vereinigung"},{"title":"Journal der Deutschen Mathematiker-Vereinigung"}],"title":[{"title_sort":"Documenta mathematica","title":"Documenta mathematica"}],"corporate":[{"display":"Deutsche Mathematiker-Vereinigung","roleDisplay":"Herausgebendes Organ","role":"isb"}],"origin":[{"publisher":"EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut für Mathematik, Technische Universität Berlin ; Deutsche Mathematiker-Vereinigung e.V.","dateIssuedDisp":"1996-","publisherPlace":"Berlin, Germany ; Berlin","dateIssuedKey":"1996"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 21.06.2019"],"language":["ger"],"disp":"The adic tame siteDocumenta mathematica"}],"note":["Gesehen am 29.10.2021"],"language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","display":"Hübner, Katharina","roleDisplay":"VerfasserIn","given":"Katharina","family":"Hübner"}],"title":[{"title":"The adic tame site","title_sort":"adic tame site"}],"id":{"doi":["10.25537/dm.2021v26.873-945"],"eki":["1775706362"]},"recId":"1775706362","name":{"displayForm":["Katharina Hübner"]}} | ||
| SRT | |a HUEBNERKATADICTAMESI2021 | ||