The adic tame site

For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hübner, Katharina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Documenta mathematica
Year: 2021, Jahrgang: 26, Pages: 873-945
ISSN:1431-0643
DOI:10.25537/dm.2021v26.873-945
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.25537/dm.2021v26.873-945
Verlag, lizenzpflichtig, Volltext: https://elibm.org/article/10012113
Volltext
Verfasserangaben:Katharina Hübner
Beschreibung
Zusammenfassung:For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and compare its fundamental group with the conventional tame fundamental group. Finally, assuming resolution of singularities, for a regular scheme X over a base scheme S of characteristic p>0 we prove a cohomological purity theorem for the constant sheaf Z/pZ on Spa(X,S)t. As a corollary we obtain homotopy invariance for the tame cohomology groups of Spa(X,S).
Beschreibung:Gesehen am 29.10.2021
Beschreibung:Online Resource
ISSN:1431-0643
DOI:10.25537/dm.2021v26.873-945