Benchmarking the robustness of semantic segmentation models with respect to common corruptions

When designing a semantic segmentation model for a real-world application, such as autonomous driving, it is crucial to understand the robustness of the network with respect to a wide range of image corruptions. While there are recent robustness studies for full-image classification, we are the firs...

Full description

Saved in:
Bibliographic Details
Main Authors: Kamann, Christoph (Author) , Rother, Carsten (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: International journal of computer vision
Year: 2021, Volume: 129, Issue: 2, Pages: 462-483
ISSN:1573-1405
DOI:10.1007/s11263-020-01383-2
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s11263-020-01383-2
Get full text
Author Notes:Christoph Kamann, Carsten Rother

MARC

LEADER 00000caa a2200000 c 4500
001 1776536940
003 DE-627
005 20220208211913.0
007 cr uuu---uuuuu
008 211109s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11263-020-01383-2  |2 doi 
035 |a (DE-627)1776536940 
035 |a (DE-599)KXP1776536940 
035 |a (OCoLC)1295678385 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kamann, Christoph  |d 1993-  |e VerfasserIn  |0 (DE-588)123637603X  |0 (DE-627)1761740598  |4 aut 
245 1 0 |a Benchmarking the robustness of semantic segmentation models with respect to common corruptions  |c Christoph Kamann, Carsten Rother 
264 1 |c 2021 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 30 September 2020 
500 |a Gesehen am 09.11.2021 
520 |a When designing a semantic segmentation model for a real-world application, such as autonomous driving, it is crucial to understand the robustness of the network with respect to a wide range of image corruptions. While there are recent robustness studies for full-image classification, we are the first to present an exhaustive study for semantic segmentation, based on many established neural network architectures. We utilize almost 400,000 images generated from the Cityscapes dataset, PASCAL VOC 2012, and ADE20K. Based on the benchmark study, we gain several new insights. Firstly, many networks perform well with respect to real-world image corruptions, such as a realistic PSF blur. Secondly, some architecture properties significantly affect robustness, such as a Dense Prediction Cell, designed to maximize performance on clean data only. Thirdly, the generalization capability of semantic segmentation models depends strongly on the type of image corruption. Models generalize well for image noise and image blur, however, not with respect to digitally corrupted data or weather corruptions. 
700 1 |a Rother, Carsten  |e VerfasserIn  |0 (DE-588)1181464692  |0 (DE-627)1662676883  |4 aut 
773 0 8 |i Enthalten in  |t International journal of computer vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987  |g 129(2021), 2, Seite 462-483  |h Online-Ressource  |w (DE-627)271350083  |w (DE-600)1479903-0  |w (DE-576)102669104  |x 1573-1405  |7 nnas  |a Benchmarking the robustness of semantic segmentation models with respect to common corruptions 
773 1 8 |g volume:129  |g year:2021  |g number:2  |g pages:462-483  |g extent:22  |a Benchmarking the robustness of semantic segmentation models with respect to common corruptions 
856 4 0 |u https://doi.org/10.1007/s11263-020-01383-2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20211109 
993 |a Article 
994 |a 2021 
998 |g 1181464692  |a Rother, Carsten  |m 1181464692:Rother, Carsten  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PR1181464692  |e 708070PR1181464692  |e 700000PR1181464692  |e 728500PR1181464692  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 123637603X  |a Kamann, Christoph  |m 123637603X:Kamann, Christoph  |d 700000  |d 708070  |e 700000PK123637603X  |e 708070PK123637603X  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1776536940  |e 4000369172 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1776536940","note":["Published online: 30 September 2020","Gesehen am 09.11.2021"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Benchmarking the robustness of semantic segmentation models with respect to common corruptions","title":"Benchmarking the robustness of semantic segmentation models with respect to common corruptions"}],"person":[{"given":"Christoph","family":"Kamann","role":"aut","roleDisplay":"VerfasserIn","display":"Kamann, Christoph"},{"roleDisplay":"VerfasserIn","display":"Rother, Carsten","role":"aut","family":"Rother","given":"Carsten"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1573-1405"],"zdb":["1479903-0"],"eki":["271350083"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1987-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1987"}],"part":{"pages":"462-483","issue":"2","year":"2021","extent":"22","text":"129(2021), 2, Seite 462-483","volume":"129"},"pubHistory":["1.1987 -"],"language":["eng"],"recId":"271350083","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Benchmarking the robustness of semantic segmentation models with respect to common corruptionsInternational journal of computer vision","note":["Gesehen am 01.11.05"],"title":[{"title":"International journal of computer vision","title_sort":"International journal of computer vision"}]}],"physDesc":[{"extent":"22 S."}],"id":{"doi":["10.1007/s11263-020-01383-2"],"eki":["1776536940"]},"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"name":{"displayForm":["Christoph Kamann, Carsten Rother"]}} 
SRT |a KAMANNCHRIBENCHMARKI2021