Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics: survey study

Background: Artificial intelligence (AI) has shown potential to improve diagnostics of various diseases, especially for early detection of skin cancer. Studies have yet to investigate the clear application of AI technology in clinical practice or determine the added value for younger user groups. Tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haggenmüller, Sarah (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Jutzi, Tanja (VerfasserIn) , Trapp, Nicole (VerfasserIn) , Kiehl, Lennard (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Fabian, Sascha (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27.08.2021
In: JMIR mhealth and uhealth
Year: 2021, Jahrgang: 9, Heft: 8, Pages: 1-8
ISSN:2291-5222
DOI:10.2196/22909
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2196/22909
Verlag, lizenzpflichtig, Volltext: https://mhealth.jmir.org/2021/8/e22909
Volltext
Verfasserangaben:Sarah Haggenmüller, MSc; Eva Krieghoff-Henning, PhD; Tanja Jutzi, PhD; Nicole Trapp, Lennard Kiehl, BSc; Jochen Sven Utikal, MD; Sascha Fabian, PhD; Titus Josef Brinker, MD

MARC

LEADER 00000caa a2200000 c 4500
001 1777512719
003 DE-627
005 20250701092259.0
007 cr uuu---uuuuu
008 211116s2021 xx |||||o 00| ||eng c
024 7 |a 10.2196/22909  |2 doi 
035 |a (DE-627)1777512719 
035 |a (DE-599)KXP1777512719 
035 |a (OCoLC)1341424067 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Haggenmüller, Sarah  |d 1995-  |e VerfasserIn  |0 (DE-588)1231946709  |0 (DE-627)1755618042  |4 aut 
245 1 0 |a Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics  |b survey study  |c Sarah Haggenmüller, MSc; Eva Krieghoff-Henning, PhD; Tanja Jutzi, PhD; Nicole Trapp, Lennard Kiehl, BSc; Jochen Sven Utikal, MD; Sascha Fabian, PhD; Titus Josef Brinker, MD 
264 1 |c 27.08.2021 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.11.2021 
520 |a Background: Artificial intelligence (AI) has shown potential to improve diagnostics of various diseases, especially for early detection of skin cancer. Studies have yet to investigate the clear application of AI technology in clinical practice or determine the added value for younger user groups. Translation of AI-based diagnostic tools can only be successful if they are accepted by potential users. Young adults as digital natives may offer the greatest potential for successful implementation of AI into clinical practice, while at the same time, representing the future generation of skin cancer screening participants. - Objective: We conducted an anonymous online survey to examine how and to what extent individuals are willing to accept AI-based mobile apps for skin cancer diagnostics. We evaluated preferences and relative influences of concerns, with a focus on younger age groups. - Methods: We recruited participants below 35 years of age using three social media channels—Facebook, LinkedIn, and Xing. Descriptive analysis and statistical tests were performed to evaluate participants’ attitudes toward mobile apps for skin examination. We integrated an adaptive choice-based conjoint to assess participants’ preferences. We evaluated potential concerns using maximum difference scaling. - Results: We included 728 participants in the analysis. The majority of participants (66.5%, 484/728; 95% CI 0.631-0.699) expressed a positive attitude toward the use of AI-based apps. In particular, participants residing in big cities or small towns (P=.02) and individuals that were familiar with the use of health or fitness apps (P=.02) were significantly more open to mobile diagnostic systems. Hierarchical Bayes estimation of the preferences of participants with a positive attitude (n=484) revealed that the use of mobile apps as an assistance system was preferred. Participants ruled out app versions with an accuracy of ≤65%, apps using data storage without encryption, and systems that did not provide background information about the decision-making process. However, participants did not mind their data being used anonymously for research purposes, nor did they object to the inclusion of clinical patient information in the decision-making process. Maximum difference scaling analysis for the negative-minded participant group (n=244) showed that data security, insufficient trust in the app, and lack of personal interaction represented the dominant concerns with respect to app use. - Conclusions: The majority of potential future users below 35 years of age were ready to accept AI-based diagnostic solutions for early detection of skin cancer. However, for translation into clinical practice, the participants’ demands for increased transparency and explainability of AI-based tools seem to be critical. Altogether, digital natives between 18 and 24 years and between 25 and 34 years of age expressed similar preferences and concerns when compared both to each other and to results obtained by previous studies that included other age groups. 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Jutzi, Tanja  |e VerfasserIn  |0 (DE-588)1234604825  |0 (DE-627)1759447528  |4 aut 
700 1 |a Trapp, Nicole  |e VerfasserIn  |4 aut 
700 1 |a Kiehl, Lennard  |e VerfasserIn  |0 (DE-588)1250101042  |0 (DE-627)1786951223  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Fabian, Sascha  |e VerfasserIn  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t JMIR mhealth and uhealth  |d Toronto : JMIR Publications, 2013  |g 9(2021), 8, Artikel-ID e22909, Seite 1-8  |h Online-Ressource  |w (DE-627)749502282  |w (DE-600)2719220-9  |w (DE-576)383521165  |x 2291-5222  |7 nnas  |a Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics survey study 
773 1 8 |g volume:9  |g year:2021  |g number:8  |g elocationid:e22909  |g pages:1-8  |g extent:8  |a Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics survey study 
856 4 0 |u https://doi.org/10.2196/22909  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://mhealth.jmir.org/2021/8/e22909  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211116 
993 |a Article 
994 |a 2021 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 8  |y j 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 6 
998 |g 1231946709  |a Haggenmüller, Sarah  |m 1231946709:Haggenmüller, Sarah  |d 60000  |e 60000PH1231946709  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1777512719  |e 4002431614 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1777512719"],"doi":["10.2196/22909"]},"relHost":[{"pubHistory":["1.2013 -"],"recId":"749502282","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2719220-9"],"issn":["2291-5222"],"eki":["749502282"]},"disp":"Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics survey studyJMIR mhealth and uhealth","language":["eng"],"titleAlt":[{"title":"JMU"}],"origin":[{"dateIssuedDisp":"2013-","publisherPlace":"Toronto","dateIssuedKey":"2013","publisher":"JMIR Publications"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"JMIR mhealth and uhealth","title":"JMIR mhealth and uhealth"}],"part":{"issue":"8","year":"2021","pages":"1-8","text":"9(2021), 8, Artikel-ID e22909, Seite 1-8","extent":"8","volume":"9"}}],"recId":"1777512719","physDesc":[{"extent":"8 S."}],"name":{"displayForm":["Sarah Haggenmüller, MSc; Eva Krieghoff-Henning, PhD; Tanja Jutzi, PhD; Nicole Trapp, Lennard Kiehl, BSc; Jochen Sven Utikal, MD; Sascha Fabian, PhD; Titus Josef Brinker, MD"]},"language":["eng"],"title":[{"title":"Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics","subtitle":"survey study","title_sort":"Digital natives’ preferences on mobile artificial intelligence apps for skin cancer diagnostics"}],"note":["Gesehen am 16.11.2021"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"27.08.2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"family":"Haggenmüller","display":"Haggenmüller, Sarah","role":"aut","given":"Sarah"},{"role":"aut","given":"Eva","family":"Krieghoff-Henning","display":"Krieghoff-Henning, Eva"},{"display":"Jutzi, Tanja","family":"Jutzi","role":"aut","given":"Tanja"},{"role":"aut","given":"Nicole","display":"Trapp, Nicole","family":"Trapp"},{"display":"Kiehl, Lennard","family":"Kiehl","given":"Lennard","role":"aut"},{"display":"Utikal, Jochen","family":"Utikal","given":"Jochen","role":"aut"},{"family":"Fabian","display":"Fabian, Sascha","given":"Sascha","role":"aut"},{"role":"aut","given":"Titus Josef","display":"Brinker, Titus Josef","family":"Brinker"}]} 
SRT |a HAGGENMUELDIGITALNAT2708