Event-based backpropagation can compute exact gradients for spiking neural networks

Spiking neural networks combine analog computation with event-based communication using discrete spikes. While the impressive advances of deep learning are enabled by training non-spiking artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking networks was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wunderlich, Timo (VerfasserIn) , Pehle, Christian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 June 2021
In: Scientific reports
Year: 2021, Jahrgang: 11, Pages: 1-17
ISSN:2045-2322
DOI:10.1038/s41598-021-91786-z
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41598-021-91786-z
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41598-021-91786-z
Volltext
Verfasserangaben:Timo C. Wunderlich & Christian Pehle

MARC

LEADER 00000caa a2200000 c 4500
001 1777951720
003 DE-627
005 20220820080452.0
007 cr uuu---uuuuu
008 211118s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-021-91786-z  |2 doi 
035 |a (DE-627)1777951720 
035 |a (DE-599)KXP1777951720 
035 |a (OCoLC)1341430838 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Wunderlich, Timo  |e VerfasserIn  |0 (DE-588)1187260010  |0 (DE-627)1666373451  |4 aut 
245 1 0 |a Event-based backpropagation can compute exact gradients for spiking neural networks  |c Timo C. Wunderlich & Christian Pehle 
264 1 |c 18 June 2021 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Spiking neural networks combine analog computation with event-based communication using discrete spikes. While the impressive advances of deep learning are enabled by training non-spiking artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking networks was previously hindered by the existence of discrete spike events and discontinuities. For the first time, this work derives the backpropagation algorithm for a continuous-time spiking neural network and a general loss function by applying the adjoint method together with the proper partial derivative jumps, allowing for backpropagation through discrete spike events without approximations. This algorithm, EventProp, backpropagates errors at spike times in order to compute the exact gradient in an event-based, temporally and spatially sparse fashion. We use gradients computed via EventProp to train networks on the Yin-Yang and MNIST datasets using either a spike time or voltage based loss function and report competitive performance. Our work supports the rigorous study of gradient-based learning algorithms in spiking neural networks and provides insights toward their implementation in novel brain-inspired hardware. 
650 4 |a Learning algorithms 
650 4 |a Machine learning 
650 4 |a Mathematics and computing 
700 1 |a Pehle, Christian  |d 1988-  |e VerfasserIn  |0 (DE-588)1093238550  |0 (DE-627)853202338  |0 (DE-576)46265527X  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 11(2021), Artikel-ID 12829, Seite 1-17  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Event-based backpropagation can compute exact gradients for spiking neural networks 
773 1 8 |g volume:11  |g year:2021  |g elocationid:12829  |g pages:1-17  |g extent:17  |a Event-based backpropagation can compute exact gradients for spiking neural networks 
856 4 0 |u https://doi.org/10.1038/s41598-021-91786-z  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-021-91786-z  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211118 
993 |a Article 
994 |a 2021 
998 |g 1093238550  |a Pehle, Christian  |m 1093238550:Pehle, Christian  |d 700000  |d 728500  |e 700000PP1093238550  |e 728500PP1093238550  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1187260010  |a Wunderlich, Timo  |m 1187260010:Wunderlich, Timo  |p 1  |x j 
999 |a KXP-PPN1777951720  |e 400333941X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Timo C. Wunderlich & Christian Pehle"]},"person":[{"given":"Timo","family":"Wunderlich","role":"aut","roleDisplay":"VerfasserIn","display":"Wunderlich, Timo"},{"role":"aut","display":"Pehle, Christian","roleDisplay":"VerfasserIn","given":"Christian","family":"Pehle"}],"id":{"doi":["10.1038/s41598-021-91786-z"],"eki":["1777951720"]},"origin":[{"dateIssuedDisp":"18 June 2021","dateIssuedKey":"2021"}],"title":[{"title":"Event-based backpropagation can compute exact gradients for spiking neural networks","title_sort":"Event-based backpropagation can compute exact gradients for spiking neural networks"}],"language":["eng"],"relHost":[{"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"recId":"663366712","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Event-based backpropagation can compute exact gradients for spiking neural networksScientific reports","note":["Gesehen am 12.07.24"],"part":{"pages":"1-17","year":"2021","extent":"17","volume":"11","text":"11(2021), Artikel-ID 12829, Seite 1-17"},"pubHistory":["1, article number 1 (2011)-"],"id":{"zdb":["2615211-3"],"eki":["663366712"],"issn":["2045-2322"]},"origin":[{"publisherPlace":"[London] ; London","dateIssuedDisp":"2011-","dateIssuedKey":"2011","publisher":"Springer Nature ; Nature Publishing Group"}],"physDesc":[{"extent":"Online-Ressource"}]}],"recId":"1777951720","physDesc":[{"extent":"17 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a WUNDERLICHEVENTBASED1820