Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Körtel, Nadine (VerfasserIn) , Rücklé, Cornelia (VerfasserIn) , Zhou, You (VerfasserIn) , Busch, Anke (VerfasserIn) , Hoch-Kraft, Peter (VerfasserIn) , Sutandy, F. X. Reymond (VerfasserIn) , Haase, Jacob (VerfasserIn) , Pradhan, Mihika (VerfasserIn) , Musheev, Michael (VerfasserIn) , Ostareck, Dirk (VerfasserIn) , Ostareck-Lederer, Antje (VerfasserIn) , Dieterich, Christoph (VerfasserIn) , Hüttelmaier, Stefan (VerfasserIn) , Niehrs, Christof (VerfasserIn) , Rausch, Oliver (VerfasserIn) , Dominissini, Dan (VerfasserIn) , König, Julian (VerfasserIn) , Zarnack, Kathi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 September 2021
In: Nucleic acids research
Year: 2021, Jahrgang: 49, Heft: 16, Pages: 1-19
ISSN:1362-4962
DOI:10.1093/nar/gkab485
Online-Zugang:Resolving-System, kostenfrei: https://doi.org/10.1093/nar/gkab485
Volltext
Verfasserangaben:Nadine Körtel, Cornelia Rücklé, You Zhou, Anke Busch, Peter Hoch-Kraft, F.X. Reymond Sutandy, Jacob Haase, Mihika Pradhan, Michael Musheev, Dirk Ostareck, Antje Ostareck-Lederer, Christoph Dieterich, Stefan Hüttelmaier, Christof Niehrs, Oliver Rausch, Dan Dominissini, Julian König and Kathi Zarnack

MARC

LEADER 00000caa a2200000 c 4500
001 1777957095
003 DE-627
005 20260114123419.0
007 cr uuu---uuuuu
008 211118s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/nar/gkab485  |2 doi 
035 |a (DE-627)1777957095 
035 |a (DE-599)KXP1777957095 
035 |a (OCoLC)1341430850 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Körtel, Nadine  |d 1993-  |e VerfasserIn  |0 (DE-588)1246390485  |0 (DE-627)1778941982  |4 aut 
245 1 0 |a Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning  |c Nadine Körtel, Cornelia Rücklé, You Zhou, Anke Busch, Peter Hoch-Kraft, F.X. Reymond Sutandy, Jacob Haase, Mihika Pradhan, Michael Musheev, Dirk Ostareck, Antje Ostareck-Lederer, Christoph Dieterich, Stefan Hüttelmaier, Christof Niehrs, Oliver Rausch, Dan Dominissini, Julian König and Kathi Zarnack 
246 3 3 |a Deep and accurate detection of m 6 A RNA modifications using miCLIP2 and m6Aboost machine learning 
264 1 |c 20 September 2021 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist die Zahl 6 im Ausdruck "m6A" hochgestellt 
520 |a N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification. 
540 |q DE-3  |a Namensnennung 4.0 International  |f CC BY 4.0  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
700 1 |a Rücklé, Cornelia  |e VerfasserIn  |4 aut 
700 1 |a Zhou, You  |e VerfasserIn  |4 aut 
700 1 |a Busch, Anke  |e VerfasserIn  |4 aut 
700 1 |a Hoch-Kraft, Peter  |e VerfasserIn  |4 aut 
700 1 |a Sutandy, F. X. Reymond  |e VerfasserIn  |4 aut 
700 1 |a Haase, Jacob  |d 1989-  |e VerfasserIn  |0 (DE-588)1223714659  |0 (DE-627)1743190808  |4 aut 
700 1 |a Pradhan, Mihika  |e VerfasserIn  |4 aut 
700 1 |a Musheev, Michael  |e VerfasserIn  |4 aut 
700 1 |a Ostareck, Dirk  |e VerfasserIn  |4 aut 
700 1 |a Ostareck-Lederer, Antje  |e VerfasserIn  |4 aut 
700 1 |a Dieterich, Christoph  |d 1975-  |e VerfasserIn  |0 (DE-588)130054844  |0 (DE-627)494359269  |0 (DE-576)297972448  |4 aut 
700 1 |a Hüttelmaier, Stefan  |d 1973-  |e VerfasserIn  |0 (DE-588)122419065  |0 (DE-627)705901033  |0 (DE-576)293261296  |4 aut 
700 1 |a Niehrs, Christof  |d 1962-  |e VerfasserIn  |0 (DE-588)112676324  |0 (DE-627)729343014  |0 (DE-576)373331754  |4 aut 
700 1 |a Rausch, Oliver  |e VerfasserIn  |4 aut 
700 1 |a Dominissini, Dan  |e VerfasserIn  |4 aut 
700 1 |a König, Julian  |d 1977-  |e VerfasserIn  |0 (DE-588)136057225  |0 (DE-627)577132555  |0 (DE-576)300805543  |4 aut 
700 1 |a Zarnack, Kathi  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Nucleic acids research  |d Oxford : Oxford Univ. Press, 1974  |g 49(2021), 16, Artikel-ID e92, Seite 1-19  |h Online-Ressource  |w (DE-627)26813250X  |w (DE-600)1472175-2  |w (DE-576)07760878X  |x 1362-4962  |7 nnas  |a Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning 
773 1 8 |g volume:49  |g year:2021  |g number:16  |g elocationid:e92  |g pages:1-19  |g extent:19  |a Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning 
856 4 0 |u https://doi.org/10.1093/nar/gkab485  |x Resolving-System  |z kostenfrei  |7 0 
951 |a AR 
992 |a 20211124 
993 |a Article 
994 |a 2021 
998 |g 112676324  |a Niehrs, Christof  |m 112676324:Niehrs, Christof  |d 50000  |e 50000PN112676324  |k 0/50000/  |p 14 
998 |g 130054844  |a Dieterich, Christoph  |m 130054844:Dieterich, Christoph  |d 910000  |d 910100  |e 910000PD130054844  |e 910100PD130054844  |k 0/910000/  |k 1/910000/910100/  |p 12 
999 |a KXP-PPN1777957095  |e 4005394892 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel ist die Zahl 6 im Ausdruck \"m6A\" hochgestellt"],"title":[{"title":"Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning","title_sort":"Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning"}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"20 September 2021"}],"relHost":[{"pubHistory":["1.1974 -"],"titleAlt":[{"title":"NAR online"},{"title":"NAR"},{"title":"Database issue"},{"title":"Web server issue"}],"part":{"pages":"1-19","issue":"16","extent":"19","text":"49(2021), 16, Artikel-ID e92, Seite 1-19","year":"2021","volume":"49"},"id":{"zdb":["1472175-2"],"eki":["26813250X"],"issn":["1362-4962"]},"origin":[{"publisherPlace":"Oxford","dateIssuedKey":"1974","dateIssuedDisp":"1974-","publisher":"Oxford Univ. Press"}],"note":["Gesehen am 15.09.2025","Ungezählte Beil.: Database issue; Web server issue"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Nucleic acids research","title":"Nucleic acids research"}],"physDesc":[{"extent":"Online-Ressource"}],"recId":"26813250X","disp":"Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learningNucleic acids research"}],"person":[{"given":"Nadine","role":"aut","family":"Körtel","display":"Körtel, Nadine"},{"given":"Cornelia","role":"aut","family":"Rücklé","display":"Rücklé, Cornelia"},{"display":"Zhou, You","family":"Zhou","given":"You","role":"aut"},{"display":"Busch, Anke","role":"aut","given":"Anke","family":"Busch"},{"family":"Hoch-Kraft","role":"aut","given":"Peter","display":"Hoch-Kraft, Peter"},{"family":"Sutandy","role":"aut","given":"F. X. Reymond","display":"Sutandy, F. X. Reymond"},{"display":"Haase, Jacob","family":"Haase","role":"aut","given":"Jacob"},{"display":"Pradhan, Mihika","family":"Pradhan","given":"Mihika","role":"aut"},{"family":"Musheev","role":"aut","given":"Michael","display":"Musheev, Michael"},{"role":"aut","given":"Dirk","family":"Ostareck","display":"Ostareck, Dirk"},{"given":"Antje","role":"aut","family":"Ostareck-Lederer","display":"Ostareck-Lederer, Antje"},{"family":"Dieterich","role":"aut","given":"Christoph","display":"Dieterich, Christoph"},{"display":"Hüttelmaier, Stefan","family":"Hüttelmaier","given":"Stefan","role":"aut"},{"display":"Niehrs, Christof","given":"Christof","role":"aut","family":"Niehrs"},{"given":"Oliver","role":"aut","family":"Rausch","display":"Rausch, Oliver"},{"given":"Dan","role":"aut","family":"Dominissini","display":"Dominissini, Dan"},{"given":"Julian","role":"aut","family":"König","display":"König, Julian"},{"given":"Kathi","role":"aut","family":"Zarnack","display":"Zarnack, Kathi"}],"physDesc":[{"extent":"19 S."}],"recId":"1777957095","id":{"doi":["10.1093/nar/gkab485"],"eki":["1777957095"]},"name":{"displayForm":["Nadine Körtel, Cornelia Rücklé, You Zhou, Anke Busch, Peter Hoch-Kraft, F.X. Reymond Sutandy, Jacob Haase, Mihika Pradhan, Michael Musheev, Dirk Ostareck, Antje Ostareck-Lederer, Christoph Dieterich, Stefan Hüttelmaier, Christof Niehrs, Oliver Rausch, Dan Dominissini, Julian König and Kathi Zarnack"]},"titleAlt":[{"title":"Deep and accurate detection of m 6 A RNA modifications using miCLIP2 and m6Aboost machine learning"}]} 
SRT |a KOERTELNADDEEPANDACC2020