Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites

This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice-rich permafrost-underlain landscapes. It is difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anders, Katharina (VerfasserIn) , Marx, Sabrina (VerfasserIn) , Boike, Julia (VerfasserIn) , Herfort, Benjamin (VerfasserIn) , Wilcox, Evan James (VerfasserIn) , Langer, Moritz (VerfasserIn) , Marsh, Philip (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Earth surface processes and landforms
Year: 2020, Jahrgang: 45, Heft: 7, Pages: 1589-1600
ISSN:1096-9837
DOI:10.1002/esp.4833
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/esp.4833
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4833
Volltext
Verfasserangaben:Katharina Anders, Sabrina Marx, Julia Boike, Benjamin Herfort, Evan James Wilcox, Moritz Langer, Philip Marsh and Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1778263887
003 DE-627
005 20220208225201.0
007 cr uuu---uuuuu
008 211122s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/esp.4833  |2 doi 
035 |a (DE-627)1778263887 
035 |a (DE-599)KXP1778263887 
035 |a (OCoLC)1295680418 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Anders, Katharina  |d 1990-  |e VerfasserIn  |0 (DE-588)1128842580  |0 (DE-627)883601109  |0 (DE-576)48610298X  |4 aut 
245 1 0 |a Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites  |c Katharina Anders, Sabrina Marx, Julia Boike, Benjamin Herfort, Evan James Wilcox, Moritz Langer, Philip Marsh and Bernhard Höfle 
264 1 |c 2020 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online 21 February 2020 in Wiley Online Library 
500 |a Gesehen am 22.11.2021 
520 |a This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice-rich permafrost-underlain landscapes. It is difficult to quantify thaw subsidence in tundra areas as they often lack stable reference frames. Also, there is no solid ground surface to serve as a basis for elevation measurements, due to a continuous moss-lichen cover. We investigate how an expert-driven method improves the accuracy of benchmark measurements at discrete locations within two sites using multitemporal TLS data of a 1-year period. Our method aggregates multiple experts’ determination of the ground surface in 3D point clouds, collected in a web-based tool. We then compare this to the performance of a fully automated ground surface determination method. Lastly, we quantify ground surface displacement by directly computing multitemporal point cloud distances, thereby extending thaw subsidence observation to an area-based assessment. Using the expert-driven quantification as reference, we validate the other methods, including in-situ benchmark measurements from a conventional field survey. This study demonstrates that quantifying the ground surface using 3D point clouds is more accurate than the field survey method. The expert-driven method achieves an accuracy of 0.1 ± 0.1 cm. Compared to this, in-situ benchmark measurements by single surveyors yield an accuracy of 0.4 ± 1.5 cm. This difference between the two methods is important, considering an observed displacement of 1.4 cm at the sites. Thaw subsidence quantification with the fully automatic benchmark-based method achieves an accuracy of 0.2 ± 0.5 cm and direct point cloud distance computation an accuracy of 0.2 ± 0.9 cm. The range in accuracy is largely influenced by properties of vegetation structure at locations within the sites. The developed methods enable a link of automated quantification and expert judgement for transparent long-term monitoring of permafrost subsidence. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 
650 4 |a 3D geoinformation 
650 4 |a change analysis 
650 4 |a ground surface displacement 
650 4 |a multitemporal LiDAR 
650 4 |a permafrost monitoring 
700 1 |a Marx, Sabrina  |e VerfasserIn  |0 (DE-588)1062689666  |0 (DE-627)805628630  |0 (DE-576)405137966  |4 aut 
700 1 |a Boike, Julia  |e VerfasserIn  |4 aut 
700 1 |a Herfort, Benjamin  |d 1991-  |e VerfasserIn  |0 (DE-588)1066402140  |0 (DE-627)817493832  |0 (DE-576)425832473  |4 aut 
700 1 |a Wilcox, Evan James  |e VerfasserIn  |4 aut 
700 1 |a Langer, Moritz  |e VerfasserIn  |4 aut 
700 1 |a Marsh, Philip  |e VerfasserIn  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |t Earth surface processes and landforms  |d New York, NY [u.a.] : Wiley, 1976  |g 45(2020), 7, Seite 1589-1600  |h Online-Ressource  |w (DE-627)271177764  |w (DE-600)1479188-2  |w (DE-576)078590256  |x 1096-9837  |7 nnas  |a Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites 
773 1 8 |g volume:45  |g year:2020  |g number:7  |g pages:1589-1600  |g extent:12  |a Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites 
856 4 0 |u https://doi.org/10.1002/esp.4833  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4833  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20211122 
993 |a Article 
994 |a 2020 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 8  |y j 
998 |g 1066402140  |a Herfort, Benjamin  |m 1066402140:Herfort, Benjamin  |d 120000  |d 120700  |e 120000PH1066402140  |e 120700PH1066402140  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1062689666  |a Marx, Sabrina  |m 1062689666:Marx, Sabrina  |d 120000  |d 120700  |e 120000PM1062689666  |e 120700PM1062689666  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1128842580  |a Anders, Katharina  |m 1128842580:Anders, Katharina  |d 120000  |d 120700  |e 120000PA1128842580  |e 120700PA1128842580  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1778263887  |e 4004768306 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"271177764","pubHistory":["1.1976 -"],"note":["Gesehen am 27.03.2012"],"disp":"Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sitesEarth surface processes and landforms","physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Earth surface processes and landforms","title":"Earth surface processes and landforms"}],"part":{"text":"45(2020), 7, Seite 1589-1600","pages":"1589-1600","volume":"45","issue":"7","extent":"12","year":"2020"},"origin":[{"publisher":"Wiley","dateIssuedKey":"1976","publisherPlace":"New York, NY [u.a.]","dateIssuedDisp":"1976-"}],"language":["eng"],"id":{"doi":["10.1002/(ISSN)1096-9837"],"eki":["271177764"],"issn":["1096-9837"],"zdb":["1479188-2"]},"type":{"bibl":"periodical","media":"Online-Ressource"}}],"person":[{"display":"Anders, Katharina","family":"Anders","given":"Katharina","role":"aut"},{"role":"aut","given":"Sabrina","family":"Marx","display":"Marx, Sabrina"},{"given":"Julia","display":"Boike, Julia","family":"Boike","role":"aut"},{"role":"aut","family":"Herfort","display":"Herfort, Benjamin","given":"Benjamin"},{"family":"Wilcox","display":"Wilcox, Evan James","given":"Evan James","role":"aut"},{"role":"aut","family":"Langer","display":"Langer, Moritz","given":"Moritz"},{"role":"aut","given":"Philip","display":"Marsh, Philip","family":"Marsh"},{"given":"Bernhard","family":"Höfle","display":"Höfle, Bernhard","role":"aut"}],"title":[{"title_sort":"Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites","title":"Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites"}],"physDesc":[{"extent":"12 S."}],"origin":[{"dateIssuedDisp":"2020","dateIssuedKey":"2020"}],"id":{"doi":["10.1002/esp.4833"],"eki":["1778263887"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Published online 21 February 2020 in Wiley Online Library","Gesehen am 22.11.2021"],"recId":"1778263887","name":{"displayForm":["Katharina Anders, Sabrina Marx, Julia Boike, Benjamin Herfort, Evan James Wilcox, Moritz Langer, Philip Marsh and Bernhard Höfle"]}} 
SRT |a ANDERSKATHMULTITEMPO2020