Distinct roles of N-terminal fatty acid acylation of the Salinity-sensor protein SOS3

The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Villalta, Irene (VerfasserIn) , García, Elena (VerfasserIn) , Hornero-Mendez, Dámaso (VerfasserIn) , Carranco, Raúl (VerfasserIn) , Tello Lacal, Carlos (VerfasserIn) , Mendoza, Imelda (VerfasserIn) , De Luca, Anna (VerfasserIn) , Andrés González, Zaida (VerfasserIn) , Schumacher, Karin (VerfasserIn) , Pardo, José M. (VerfasserIn) , Quintero, Francisco J. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 September 2021
In: Frontiers in plant science
Year: 2021, Jahrgang: 12, Pages: 1-15
ISSN:1664-462X
DOI:10.3389/fpls.2021.691124
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fpls.2021.691124
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/article/10.3389/fpls.2021.691124
Volltext
Verfasserangaben:Irene Villalta, Elena García, Dámaso Hornero-Mendez, Raúl Carranco, Carlos Tello, Imelda Mendoza, Anna De Luca, Zaida Andrés, Karin Schumacher, José M. Pardo and Francisco J. Quintero
Beschreibung
Zusammenfassung:The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.
Beschreibung:Gesehen am 23.11.2021
Beschreibung:Online Resource
ISSN:1664-462X
DOI:10.3389/fpls.2021.691124