Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains
Purpose: Human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC) is tumorigenic and has been associated with a favorable prognosis compared with OPSCC caused by tobacco, alcohol, and other carcinogens. Meanwhile, machine learning has evolved as a powerful tool to predict molecula...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
February 2021
|
| In: |
Clinical cancer research
Year: 2021, Jahrgang: 27, Heft: 4, Pages: 1131-1138 |
| ISSN: | 1557-3265 |
| DOI: | 10.1158/1078-0432.CCR-20-3596 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://clincancerres.aacrjournals.org/content/27/4/1131 Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1158/1078-0432.CCR-20-3596 |
| Verfasserangaben: | Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1778397727 | ||
| 003 | DE-627 | ||
| 005 | 20221222142631.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211123s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1158/1078-0432.CCR-20-3596 |2 doi | |
| 035 | |a (DE-627)1778397727 | ||
| 035 | |a (DE-599)KXP1778397727 | ||
| 035 | |a (OCoLC)1341423978 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Klein, Sebastian |d 1987- |e VerfasserIn |0 (DE-588)1200436482 |0 (DE-627)1683526228 |4 aut | |
| 245 | 1 | 0 | |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains |c Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann |
| 264 | 1 | |c February 2021 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 23.11.2021 | ||
| 520 | |a Purpose: Human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC) is tumorigenic and has been associated with a favorable prognosis compared with OPSCC caused by tobacco, alcohol, and other carcinogens. Meanwhile, machine learning has evolved as a powerful tool to predict molecular and cellular alterations of medical images of various sources. - Experimental Design: We generated a deep learning-based HPV prediction score (HPV-ps) on regular hematoxylin and eosin (H&E) stains and assessed its performance to predict HPV association using 273 patients from two different sites (OPSCC; Giessen, n = 163; Cologne, n = 110). Then, the prognostic relevance in a total of 594 patients (Giessen, Cologne, HNSCC TCGA) was evaluated. In addition, we investigated whether four board-certified pathologists could identify HPV association (n = 152) and compared the results to the classifier. - Results: Although pathologists were able to diagnose HPV association from H&E-stained slides (AUC = 0.74, median of four observers), the interrater reliability was minimal (Light Kappa = 0.37; P = 0.129), as compared with AUC = 0.8 using the HPV-ps within two independent cohorts (n = 273). The HPV-ps identified individuals with a favorable prognosis in a total of 594 patients from three cohorts (Giessen, OPSCC, HR = 0.55, P < 0.0001; Cologne, OPSCC, HR = 0.44, P = 0.0027; TCGA, non-OPSCC head and neck, HR = 0.69, P = 0.0073). Interestingly, the HPV-ps further stratified patients when combined with p16 status (Giessen, HR = 0.06, P < 0.0001; Cologne, HR = 0.3, P = 0.046). - Conclusions: Detection of HPV association in OPSCC using deep learning with help of regular H&E stains may either be used as a single biomarker, or in combination with p16 status, to identify patients with OPSCC with a favorable prognosis, potentially outperforming combined HPV-DNA/p16 status as a biomarker for patient stratification. | ||
| 700 | 1 | |a Quaas, Alexander |d 1972- |e VerfasserIn |0 (DE-588)132015374 |0 (DE-627)516841084 |0 (DE-576)298894319 |4 aut | |
| 700 | 1 | |a Quantius, Jennifer |e VerfasserIn |0 (DE-588)1114828270 |0 (DE-627)869216104 |0 (DE-576)477508480 |4 aut | |
| 700 | 1 | |a Löser, Heike |e VerfasserIn |4 aut | |
| 700 | 1 | |a Meinel, Jörn |d 1978- |e VerfasserIn |0 (DE-588)1020897414 |0 (DE-627)691399816 |0 (DE-576)358438535 |4 aut | |
| 700 | 1 | |a Peifer, Martin |e VerfasserIn |0 (DE-588)132933055 |0 (DE-627)52868678X |0 (DE-576)299511766 |4 aut | |
| 700 | 1 | |a Wagner, Steffen |d 1977- |e VerfasserIn |0 (DE-588)138049300 |0 (DE-627)599338091 |0 (DE-576)306312263 |4 aut | |
| 700 | 1 | |a Gattenlöhner, Stefan |e VerfasserIn |0 (DE-588)1205565922 |0 (DE-627)1691234931 |4 aut | |
| 700 | 1 | |a Wittekindt, Claus |d 1972- |e VerfasserIn |0 (DE-588)122274032 |0 (DE-627)705842282 |0 (DE-576)293188750 |4 aut | |
| 700 | 1 | |a Knebel Doeberitz, Magnus von |e VerfasserIn |0 (DE-588)1022165291 |0 (DE-627)71693289X |0 (DE-576)364934239 |4 aut | |
| 700 | 1 | |a Prigge, Elena-Sophie |e VerfasserIn |0 (DE-588)1070611352 |0 (DE-627)824110757 |0 (DE-576)431628653 |4 aut | |
| 700 | 1 | |a Langer, Christine |e VerfasserIn |0 (DE-588)127638162X |0 (DE-627)1829041487 |4 aut | |
| 700 | 1 | |a Noh, Ka-Won |e VerfasserIn |4 aut | |
| 700 | 1 | |a Maltseva, Margaret |e VerfasserIn |4 aut | |
| 700 | 1 | |a Reinhardt, Christian |e VerfasserIn |0 (DE-588)1183725930 |0 (DE-627)1663305528 |4 aut | |
| 700 | 1 | |a Büttner, Reinhard |d 1960- |e VerfasserIn |0 (DE-588)171994825 |0 (DE-627)696891301 |0 (DE-576)132870975 |4 aut | |
| 700 | 1 | |a Klußmann, Jens Peter |d 1967- |e VerfasserIn |0 (DE-588)120095335 |0 (DE-627)696375869 |0 (DE-576)292038666 |4 aut | |
| 700 | 1 | |a Würdemann, Nora |e VerfasserIn |0 (DE-588)1134899912 |0 (DE-627)889781931 |0 (DE-576)489575056 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Clinical cancer research |d Philadelphia, Pa. [u.a.] : AACR, 1995 |g 27(2021), 4, Seite 1131-1138 |h Online-Ressource |w (DE-627)325489971 |w (DE-600)2036787-9 |w (DE-576)094502234 |x 1557-3265 |7 nnas |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains |
| 773 | 1 | 8 | |g volume:27 |g year:2021 |g number:4 |g pages:1131-1138 |g extent:8 |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains |
| 856 | 4 | 0 | |u https://clincancerres.aacrjournals.org/content/27/4/1131 |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://doi.org/10.1158/1078-0432.CCR-20-3596 |x Resolving-System |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211123 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1070611352 |a Prigge, Elena-Sophie |m 1070611352:Prigge, Elena-Sophie |d 910000 |d 912000 |e 910000PP1070611352 |e 912000PP1070611352 |k 0/910000/ |k 1/910000/912000/ |p 11 | ||
| 998 | |g 1022165291 |a Knebel Doeberitz, Magnus von |m 1022165291:Knebel Doeberitz, Magnus von |d 910000 |d 912000 |e 910000PK1022165291 |e 912000PK1022165291 |k 0/910000/ |k 1/910000/912000/ |p 10 | ||
| 999 | |a KXP-PPN1778397727 |e 4005141420 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann"]},"id":{"eki":["1778397727"],"doi":["10.1158/1078-0432.CCR-20-3596"]},"origin":[{"dateIssuedDisp":"February 2021","dateIssuedKey":"2021"}],"relHost":[{"id":{"eki":["325489971"],"issn":["1557-3265"],"zdb":["2036787-9"]},"part":{"volume":"27","year":"2021","issue":"4","extent":"8","text":"27(2021), 4, Seite 1131-1138","pages":"1131-1138"},"corporate":[{"display":"American Association for Cancer Research","role":"isb"}],"name":{"displayForm":["American Association for Cancer Research"]},"pubHistory":["1.1995 -"],"disp":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stainsClinical cancer research","physDesc":[{"extent":"Online-Ressource"}],"recId":"325489971","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 08.06.2023","Fortsetzung der Druck-Ausgabe"],"title":[{"title_sort":"Clinical cancer research","title":"Clinical cancer research"}],"origin":[{"publisher":"AACR","dateIssuedKey":"1995","publisherPlace":"Philadelphia, Pa. [u.a.]","dateIssuedDisp":"1995-"}]}],"person":[{"family":"Klein","given":"Sebastian","role":"aut","display":"Klein, Sebastian"},{"family":"Quaas","given":"Alexander","role":"aut","display":"Quaas, Alexander"},{"display":"Quantius, Jennifer","role":"aut","given":"Jennifer","family":"Quantius"},{"role":"aut","given":"Heike","family":"Löser","display":"Löser, Heike"},{"role":"aut","given":"Jörn","family":"Meinel","display":"Meinel, Jörn"},{"display":"Peifer, Martin","given":"Martin","role":"aut","family":"Peifer"},{"family":"Wagner","role":"aut","given":"Steffen","display":"Wagner, Steffen"},{"display":"Gattenlöhner, Stefan","family":"Gattenlöhner","given":"Stefan","role":"aut"},{"role":"aut","given":"Claus","family":"Wittekindt","display":"Wittekindt, Claus"},{"family":"Knebel Doeberitz","role":"aut","given":"Magnus von","display":"Knebel Doeberitz, Magnus von"},{"given":"Elena-Sophie","role":"aut","family":"Prigge","display":"Prigge, Elena-Sophie"},{"display":"Langer, Christine","family":"Langer","given":"Christine","role":"aut"},{"role":"aut","given":"Ka-Won","family":"Noh","display":"Noh, Ka-Won"},{"display":"Maltseva, Margaret","family":"Maltseva","role":"aut","given":"Margaret"},{"display":"Reinhardt, Christian","role":"aut","given":"Christian","family":"Reinhardt"},{"role":"aut","given":"Reinhard","family":"Büttner","display":"Büttner, Reinhard"},{"family":"Klußmann","role":"aut","given":"Jens Peter","display":"Klußmann, Jens Peter"},{"display":"Würdemann, Nora","role":"aut","given":"Nora","family":"Würdemann"}],"title":[{"title":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains","title_sort":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 23.11.2021"],"recId":"1778397727","physDesc":[{"extent":"8 S."}]} | ||
| SRT | |a KLEINSEBASDEEPLEARNI2021 | ||