Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains

Purpose: Human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC) is tumorigenic and has been associated with a favorable prognosis compared with OPSCC caused by tobacco, alcohol, and other carcinogens. Meanwhile, machine learning has evolved as a powerful tool to predict molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Klein, Sebastian (VerfasserIn) , Quaas, Alexander (VerfasserIn) , Quantius, Jennifer (VerfasserIn) , Löser, Heike (VerfasserIn) , Meinel, Jörn (VerfasserIn) , Peifer, Martin (VerfasserIn) , Wagner, Steffen (VerfasserIn) , Gattenlöhner, Stefan (VerfasserIn) , Wittekindt, Claus (VerfasserIn) , Knebel Doeberitz, Magnus von (VerfasserIn) , Prigge, Elena-Sophie (VerfasserIn) , Langer, Christine (VerfasserIn) , Noh, Ka-Won (VerfasserIn) , Maltseva, Margaret (VerfasserIn) , Reinhardt, Christian (VerfasserIn) , Büttner, Reinhard (VerfasserIn) , Klußmann, Jens Peter (VerfasserIn) , Würdemann, Nora (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2021
In: Clinical cancer research
Year: 2021, Jahrgang: 27, Heft: 4, Pages: 1131-1138
ISSN:1557-3265
DOI:10.1158/1078-0432.CCR-20-3596
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://clincancerres.aacrjournals.org/content/27/4/1131
Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1158/1078-0432.CCR-20-3596
Volltext
Verfasserangaben:Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann

MARC

LEADER 00000caa a2200000 c 4500
001 1778397727
003 DE-627
005 20221222142631.0
007 cr uuu---uuuuu
008 211123s2021 xx |||||o 00| ||eng c
024 7 |a 10.1158/1078-0432.CCR-20-3596  |2 doi 
035 |a (DE-627)1778397727 
035 |a (DE-599)KXP1778397727 
035 |a (OCoLC)1341423978 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Klein, Sebastian  |d 1987-  |e VerfasserIn  |0 (DE-588)1200436482  |0 (DE-627)1683526228  |4 aut 
245 1 0 |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains  |c Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann 
264 1 |c February 2021 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.11.2021 
520 |a Purpose: Human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC) is tumorigenic and has been associated with a favorable prognosis compared with OPSCC caused by tobacco, alcohol, and other carcinogens. Meanwhile, machine learning has evolved as a powerful tool to predict molecular and cellular alterations of medical images of various sources. - Experimental Design: We generated a deep learning-based HPV prediction score (HPV-ps) on regular hematoxylin and eosin (H&E) stains and assessed its performance to predict HPV association using 273 patients from two different sites (OPSCC; Giessen, n = 163; Cologne, n = 110). Then, the prognostic relevance in a total of 594 patients (Giessen, Cologne, HNSCC TCGA) was evaluated. In addition, we investigated whether four board-certified pathologists could identify HPV association (n = 152) and compared the results to the classifier. - Results: Although pathologists were able to diagnose HPV association from H&E-stained slides (AUC = 0.74, median of four observers), the interrater reliability was minimal (Light Kappa = 0.37; P = 0.129), as compared with AUC = 0.8 using the HPV-ps within two independent cohorts (n = 273). The HPV-ps identified individuals with a favorable prognosis in a total of 594 patients from three cohorts (Giessen, OPSCC, HR = 0.55, P < 0.0001; Cologne, OPSCC, HR = 0.44, P = 0.0027; TCGA, non-OPSCC head and neck, HR = 0.69, P = 0.0073). Interestingly, the HPV-ps further stratified patients when combined with p16 status (Giessen, HR = 0.06, P < 0.0001; Cologne, HR = 0.3, P = 0.046). - Conclusions: Detection of HPV association in OPSCC using deep learning with help of regular H&E stains may either be used as a single biomarker, or in combination with p16 status, to identify patients with OPSCC with a favorable prognosis, potentially outperforming combined HPV-DNA/p16 status as a biomarker for patient stratification. 
700 1 |a Quaas, Alexander  |d 1972-  |e VerfasserIn  |0 (DE-588)132015374  |0 (DE-627)516841084  |0 (DE-576)298894319  |4 aut 
700 1 |a Quantius, Jennifer  |e VerfasserIn  |0 (DE-588)1114828270  |0 (DE-627)869216104  |0 (DE-576)477508480  |4 aut 
700 1 |a Löser, Heike  |e VerfasserIn  |4 aut 
700 1 |a Meinel, Jörn  |d 1978-  |e VerfasserIn  |0 (DE-588)1020897414  |0 (DE-627)691399816  |0 (DE-576)358438535  |4 aut 
700 1 |a Peifer, Martin  |e VerfasserIn  |0 (DE-588)132933055  |0 (DE-627)52868678X  |0 (DE-576)299511766  |4 aut 
700 1 |a Wagner, Steffen  |d 1977-  |e VerfasserIn  |0 (DE-588)138049300  |0 (DE-627)599338091  |0 (DE-576)306312263  |4 aut 
700 1 |a Gattenlöhner, Stefan  |e VerfasserIn  |0 (DE-588)1205565922  |0 (DE-627)1691234931  |4 aut 
700 1 |a Wittekindt, Claus  |d 1972-  |e VerfasserIn  |0 (DE-588)122274032  |0 (DE-627)705842282  |0 (DE-576)293188750  |4 aut 
700 1 |a Knebel Doeberitz, Magnus von  |e VerfasserIn  |0 (DE-588)1022165291  |0 (DE-627)71693289X  |0 (DE-576)364934239  |4 aut 
700 1 |a Prigge, Elena-Sophie  |e VerfasserIn  |0 (DE-588)1070611352  |0 (DE-627)824110757  |0 (DE-576)431628653  |4 aut 
700 1 |a Langer, Christine  |e VerfasserIn  |0 (DE-588)127638162X  |0 (DE-627)1829041487  |4 aut 
700 1 |a Noh, Ka-Won  |e VerfasserIn  |4 aut 
700 1 |a Maltseva, Margaret  |e VerfasserIn  |4 aut 
700 1 |a Reinhardt, Christian  |e VerfasserIn  |0 (DE-588)1183725930  |0 (DE-627)1663305528  |4 aut 
700 1 |a Büttner, Reinhard  |d 1960-  |e VerfasserIn  |0 (DE-588)171994825  |0 (DE-627)696891301  |0 (DE-576)132870975  |4 aut 
700 1 |a Klußmann, Jens Peter  |d 1967-  |e VerfasserIn  |0 (DE-588)120095335  |0 (DE-627)696375869  |0 (DE-576)292038666  |4 aut 
700 1 |a Würdemann, Nora  |e VerfasserIn  |0 (DE-588)1134899912  |0 (DE-627)889781931  |0 (DE-576)489575056  |4 aut 
773 0 8 |i Enthalten in  |t Clinical cancer research  |d Philadelphia, Pa. [u.a.] : AACR, 1995  |g 27(2021), 4, Seite 1131-1138  |h Online-Ressource  |w (DE-627)325489971  |w (DE-600)2036787-9  |w (DE-576)094502234  |x 1557-3265  |7 nnas  |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains 
773 1 8 |g volume:27  |g year:2021  |g number:4  |g pages:1131-1138  |g extent:8  |a Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains 
856 4 0 |u https://clincancerres.aacrjournals.org/content/27/4/1131  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://doi.org/10.1158/1078-0432.CCR-20-3596  |x Resolving-System  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211123 
993 |a Article 
994 |a 2021 
998 |g 1070611352  |a Prigge, Elena-Sophie  |m 1070611352:Prigge, Elena-Sophie  |d 910000  |d 912000  |e 910000PP1070611352  |e 912000PP1070611352  |k 0/910000/  |k 1/910000/912000/  |p 11 
998 |g 1022165291  |a Knebel Doeberitz, Magnus von  |m 1022165291:Knebel Doeberitz, Magnus von  |d 910000  |d 912000  |e 910000PK1022165291  |e 912000PK1022165291  |k 0/910000/  |k 1/910000/912000/  |p 10 
999 |a KXP-PPN1778397727  |e 4005141420 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann"]},"id":{"eki":["1778397727"],"doi":["10.1158/1078-0432.CCR-20-3596"]},"origin":[{"dateIssuedDisp":"February 2021","dateIssuedKey":"2021"}],"relHost":[{"id":{"eki":["325489971"],"issn":["1557-3265"],"zdb":["2036787-9"]},"part":{"volume":"27","year":"2021","issue":"4","extent":"8","text":"27(2021), 4, Seite 1131-1138","pages":"1131-1138"},"corporate":[{"display":"American Association for Cancer Research","role":"isb"}],"name":{"displayForm":["American Association for Cancer Research"]},"pubHistory":["1.1995 -"],"disp":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stainsClinical cancer research","physDesc":[{"extent":"Online-Ressource"}],"recId":"325489971","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 08.06.2023","Fortsetzung der Druck-Ausgabe"],"title":[{"title_sort":"Clinical cancer research","title":"Clinical cancer research"}],"origin":[{"publisher":"AACR","dateIssuedKey":"1995","publisherPlace":"Philadelphia, Pa. [u.a.]","dateIssuedDisp":"1995-"}]}],"person":[{"family":"Klein","given":"Sebastian","role":"aut","display":"Klein, Sebastian"},{"family":"Quaas","given":"Alexander","role":"aut","display":"Quaas, Alexander"},{"display":"Quantius, Jennifer","role":"aut","given":"Jennifer","family":"Quantius"},{"role":"aut","given":"Heike","family":"Löser","display":"Löser, Heike"},{"role":"aut","given":"Jörn","family":"Meinel","display":"Meinel, Jörn"},{"display":"Peifer, Martin","given":"Martin","role":"aut","family":"Peifer"},{"family":"Wagner","role":"aut","given":"Steffen","display":"Wagner, Steffen"},{"display":"Gattenlöhner, Stefan","family":"Gattenlöhner","given":"Stefan","role":"aut"},{"role":"aut","given":"Claus","family":"Wittekindt","display":"Wittekindt, Claus"},{"family":"Knebel Doeberitz","role":"aut","given":"Magnus von","display":"Knebel Doeberitz, Magnus von"},{"given":"Elena-Sophie","role":"aut","family":"Prigge","display":"Prigge, Elena-Sophie"},{"display":"Langer, Christine","family":"Langer","given":"Christine","role":"aut"},{"role":"aut","given":"Ka-Won","family":"Noh","display":"Noh, Ka-Won"},{"display":"Maltseva, Margaret","family":"Maltseva","role":"aut","given":"Margaret"},{"display":"Reinhardt, Christian","role":"aut","given":"Christian","family":"Reinhardt"},{"role":"aut","given":"Reinhard","family":"Büttner","display":"Büttner, Reinhard"},{"family":"Klußmann","role":"aut","given":"Jens Peter","display":"Klußmann, Jens Peter"},{"display":"Würdemann, Nora","role":"aut","given":"Nora","family":"Würdemann"}],"title":[{"title":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains","title_sort":"Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 23.11.2021"],"recId":"1778397727","physDesc":[{"extent":"8 S."}]} 
SRT |a KLEINSEBASDEEPLEARNI2021