Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks

Anisotropic multi-slice Cardiac Magnetic Resonance (CMR) Images are conventionally acquired in patient-specific short-axis (SAX) orientation. In specific cardiovascular diseases that affect right ventricular (RV) morphology, acquisitions in standard axial (AX) orientation are preferred by some inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Köhler, Sven (VerfasserIn) , Hussain, Tarique (VerfasserIn) , Blair, Zach (VerfasserIn) , Huffaker, Tyler (VerfasserIn) , Ritzmann, Florian (VerfasserIn) , Tandon, Animesh (VerfasserIn) , Pickardt, Thomas (VerfasserIn) , Sarikouch, Samir (VerfasserIn) , Latus, Heiner (VerfasserIn) , Greil, Gerald (VerfasserIn) , Wolf, Ivo (VerfasserIn) , Engelhardt, Sandy (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 January 2021
In: IEEE transactions on medical imaging
Year: 2021, Jahrgang: 40, Heft: 10, Pages: 2939-2953
ISSN:1558-254X
DOI:10.1109/TMI.2021.3052972
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/TMI.2021.3052972
Volltext
Verfasserangaben:Sven Koehler, Tarique Hussain, Zach Blair, Tyler Huffaker, Florian Ritzmann, Animesh Tandon, Thomas Pickardt, Samir Sarikouch, Heiner Latus, Gerald Greil, Ivo Wolf, and Sandy Engelhardt

MARC

LEADER 00000caa a2200000 c 4500
001 1780701624
003 DE-627
005 20230428082417.0
007 cr uuu---uuuuu
008 211208s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TMI.2021.3052972  |2 doi 
035 |a (DE-627)1780701624 
035 |a (DE-599)KXP1780701624 
035 |a (OCoLC)1341434774 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Köhler, Sven  |e VerfasserIn  |0 (DE-588)124712830X  |0 (DE-627)1780697864  |4 aut 
245 1 0 |a Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks  |c Sven Koehler, Tarique Hussain, Zach Blair, Tyler Huffaker, Florian Ritzmann, Animesh Tandon, Thomas Pickardt, Samir Sarikouch, Heiner Latus, Gerald Greil, Ivo Wolf, and Sandy Engelhardt 
264 1 |c 20 January 2021 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.12.2021 
520 |a Anisotropic multi-slice Cardiac Magnetic Resonance (CMR) Images are conventionally acquired in patient-specific short-axis (SAX) orientation. In specific cardiovascular diseases that affect right ventricular (RV) morphology, acquisitions in standard axial (AX) orientation are preferred by some investigators, due to potential superiority in RV volume measurement for treatment planning. Unfortunately, due to the rare occurrence of these diseases, data in this domain is scarce. Recent research in deep learning-based methods mainly focused on SAX CMR images and they had proven to be very successful. In this work, we show that there is a considerable domain shift between AX and SAX images, and therefore, direct application of existing models yield sub-optimal results on AX samples. We propose a novel unsupervised domain adaptation approach, which uses task-related probabilities in an attention mechanism. Beyond that, cycle consistency is imposed on the learned patient-individual 3D rigid transformation to improve stability when automatically re-sampling the AX images to SAX orientations. The network was trained on 122 registered 3D AX-SAX CMR volume pairs from a multi-centric patient cohort. A mean 3D Dice of 0.86 ± 0.06 for the left ventricle, 0.65 ± 0.08 for the myocardium, and 0.77 ± 0.10 for the right ventricle could be achieved. This is an improvement of 25% in Dice for RV in comparison to direct application on axial slices. To conclude, our pre-trained task module has neither seen CMR images nor labels from the target domain, but is able to segment them after the domain gap is reduced. Code: https://github.com/Cardio-AI/3d-mri-domain-adaptation 
650 4 |a Biomedical imaging 
650 4 |a Cardiac magnetic resonance 
650 4 |a competence network for congenital heart defects 
650 4 |a Deep learning 
650 4 |a Heart 
650 4 |a Image segmentation 
650 4 |a short axis images 
650 4 |a spatial transformer networks 
650 4 |a Task analysis 
650 4 |a Three-dimensional displays 
650 4 |a Training 
650 4 |a unsupervised domain adaptation 
700 1 |a Hussain, Tarique  |e VerfasserIn  |4 aut 
700 1 |a Blair, Zach  |e VerfasserIn  |4 aut 
700 1 |a Huffaker, Tyler  |e VerfasserIn  |4 aut 
700 1 |a Ritzmann, Florian  |e VerfasserIn  |4 aut 
700 1 |a Tandon, Animesh  |e VerfasserIn  |4 aut 
700 1 |a Pickardt, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Sarikouch, Samir  |e VerfasserIn  |4 aut 
700 1 |a Latus, Heiner  |e VerfasserIn  |4 aut 
700 1 |a Greil, Gerald  |e VerfasserIn  |4 aut 
700 1 |a Wolf, Ivo  |d 1973-  |e VerfasserIn  |0 (DE-588)12485186X  |0 (DE-627)366973533  |0 (DE-576)29453511X  |4 aut 
700 1 |a Engelhardt, Sandy  |d 1987-  |e VerfasserIn  |0 (DE-588)1122674465  |0 (DE-627)876003080  |0 (DE-576)481436049  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on medical imaging  |d New York, NY : Institute of Electrical and Electronics Engineers,, 1982  |g 40(2021), 10 vom: Okt., Seite 2939-2953  |h Online-Ressource  |w (DE-627)341354759  |w (DE-600)2068206-2  |w (DE-576)105283061  |x 1558-254X  |7 nnas 
773 1 8 |g volume:40  |g year:2021  |g number:10  |g month:10  |g pages:2939-2953  |g extent:15  |a Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks 
856 4 0 |u https://doi.org/10.1109/TMI.2021.3052972  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20211208 
993 |a Article 
994 |a 2021 
998 |g 1122674465  |a Engelhardt, Sandy  |m 1122674465:Engelhardt, Sandy  |d 910000  |d 910100  |e 910000PE1122674465  |e 910100PE1122674465  |k 0/910000/  |k 1/910000/910100/  |p 12  |y j 
998 |g 12485186X  |a Wolf, Ivo  |m 12485186X:Wolf, Ivo  |d 50000  |e 50000PW12485186X  |k 0/50000/  |p 11 
998 |g 124712830X  |a Köhler, Sven  |m 124712830X:Köhler, Sven  |d 910000  |d 910100  |e 910000PK124712830X  |e 910100PK124712830X  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1780701624  |e 4016947626 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Sven Koehler, Tarique Hussain, Zach Blair, Tyler Huffaker, Florian Ritzmann, Animesh Tandon, Thomas Pickardt, Samir Sarikouch, Heiner Latus, Gerald Greil, Ivo Wolf, and Sandy Engelhardt"]},"language":["eng"],"person":[{"given":"Sven","display":"Köhler, Sven","role":"aut","family":"Köhler"},{"display":"Hussain, Tarique","given":"Tarique","family":"Hussain","role":"aut"},{"family":"Blair","role":"aut","display":"Blair, Zach","given":"Zach"},{"role":"aut","family":"Huffaker","given":"Tyler","display":"Huffaker, Tyler"},{"display":"Ritzmann, Florian","given":"Florian","role":"aut","family":"Ritzmann"},{"given":"Animesh","display":"Tandon, Animesh","role":"aut","family":"Tandon"},{"display":"Pickardt, Thomas","given":"Thomas","family":"Pickardt","role":"aut"},{"display":"Sarikouch, Samir","given":"Samir","role":"aut","family":"Sarikouch"},{"family":"Latus","role":"aut","display":"Latus, Heiner","given":"Heiner"},{"family":"Greil","role":"aut","display":"Greil, Gerald","given":"Gerald"},{"display":"Wolf, Ivo","given":"Ivo","role":"aut","family":"Wolf"},{"display":"Engelhardt, Sandy","given":"Sandy","family":"Engelhardt","role":"aut"}],"recId":"1780701624","note":["Gesehen am 08.12.2021"],"title":[{"title":"Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks","title_sort":"Unsupervised domain adaptation from axial to short-axis multi-slice cardiac MR images by incorporating pretrained task networks"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1780701624"],"doi":["10.1109/TMI.2021.3052972"]},"physDesc":[{"extent":"15 S."}],"relHost":[{"note":["Gesehen am 13.01.11"],"pubHistory":["1.1982(July) -"],"part":{"volume":"40","year":"2021","issue":"10","extent":"15","pages":"2939-2953","text":"40(2021), 10 vom: Okt., Seite 2939-2953"},"language":["eng"],"titleAlt":[{"title":"Transactions on medical imaging"}],"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"341354759","origin":[{"publisher":"Institute of Electrical and Electronics Engineers, ; IEEE","dateIssuedDisp":"1982-","dateIssuedKey":"1982","publisherPlace":"New York, NY ; New York, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1558-254X"],"eki":["341354759"],"zdb":["2068206-2"]},"title":[{"subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society ...","title":"IEEE transactions on medical imaging","title_sort":"IEEE transactions on medical imaging"}]}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"20 January 2021"}]} 
SRT |a KOEHLERSVEUNSUPERVIS2020