Towards perturbative renormalization of 𝜙2(𝑖𝜙)ɛ quantum field theory

In a previous paper it was shown how to calculate the ground-state energy density E and the p-point Green’s functions Gp(x1,x2,…,xp) for the PT-symmetric quantum field theory defined by the Hamiltonian density H=12(∇ϕ)2+12ϕ2(iϕ)ϵ in D-dimensional Euclidean spacetime, where ϕ is a pseudoscalar field....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Felski, Alexander (VerfasserIn) , Bender, Carl M. (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn) , Sarkar, Sarben (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 October 2021
In: Physical review
Year: 2021, Jahrgang: 104, Heft: 8, Pages: 1-17
ISSN:2470-0029
DOI:10.1103/PhysRevD.104.085011
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.104.085011
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.104.085011
Volltext
Verfasserangaben:Alexander Felski, Carl M. Bender, S.P. Klevansky, and Sarben Sarkar
Beschreibung
Zusammenfassung:In a previous paper it was shown how to calculate the ground-state energy density E and the p-point Green’s functions Gp(x1,x2,…,xp) for the PT-symmetric quantum field theory defined by the Hamiltonian density H=12(∇ϕ)2+12ϕ2(iϕ)ϵ in D-dimensional Euclidean spacetime, where ϕ is a pseudoscalar field. In this earlier paper E and Gp(x1,x2,…,xp) were expressed as perturbation series in powers of ϵ and were calculated to first order in ϵ. (The parameter ϵ is a measure of the nonlinearity of the interaction rather than a coupling constant.) This paper extends these perturbative calculations to the Euclidean Lagrangian L=12(∇ϕ)2+12μ2ϕ2+12gμ20ϕ2(iμ1−D/20ϕ)ϵ−ivϕ, which now includes renormalization counterterms that are linear and quadratic in the field ϕ. The parameter g is a dimensionless coupling strength and μ0 is a scaling factor having dimensions of mass. Expressions are given for the one-, two-, and three-point Green’s functions, and the renormalized mass, to higher order in powers of ϵ in D dimensions (0≤D≤2). Renormalization is performed perturbatively to second order in ϵ and the structure of the Green’s functions is analyzed in the limit D→2. A sum of the most divergent terms is performed to all orders in ϵ. Like the Cheng-Wu summation of leading logarithms in electrodynamics, it is found here that leading logarithmic divergences combine to become mildly algebraic in form. Future work that must be done to complete the perturbative renormalization procedure is discussed.
Beschreibung:Im Titelzusatz sind die Zahl 2 und der griechische Buchstabe epsilon hochgestellt
Gesehen am 20.12.2021
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.104.085011