Discrete Carleman estimates and three balls inequalities
We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold u...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
16 October 2021
|
| In: |
Calculus of variations and partial differential equations
Year: 2021, Jahrgang: 60, Heft: 6, Pages: 1-28 |
| ISSN: | 1432-0835 |
| DOI: | 10.1007/s00526-021-02098-z |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00526-021-02098-z |
| Verfasserangaben: | Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1784402737 | ||
| 003 | DE-627 | ||
| 005 | 20230317104306.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 211230s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00526-021-02098-z |2 doi | |
| 035 | |a (DE-627)1784402737 | ||
| 035 | |a (DE-599)KXP1784402737 | ||
| 035 | |a (OCoLC)1341436628 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Fernández-Bertolin, Aingeru |d 1988- |e VerfasserIn |0 (DE-588)1234193787 |0 (DE-627)1759087173 |4 aut | |
| 245 | 1 | 0 | |a Discrete Carleman estimates and three balls inequalities |c Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan |
| 264 | 1 | |c 16 October 2021 | |
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.12.2021 | ||
| 520 | |a We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold under suitable regularity assumptions. As a key auxiliary result which might be of independent interest we present a Carleman estimate for these discrete operators. | ||
| 700 | 1 | |a Roncal, Luz |e VerfasserIn |0 (DE-588)113785779X |0 (DE-627)895133164 |0 (DE-576)491776039 |4 aut | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Stan, Diana |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Calculus of variations and partial differential equations |d Berlin : Springer, 1993 |g 60(2021), 6, Artikel-ID 239, Seite 1-28 |h Online-Ressource |w (DE-627)265508274 |w (DE-600)1464202-5 |w (DE-576)074889710 |x 1432-0835 |7 nnas |a Discrete Carleman estimates and three balls inequalities |
| 773 | 1 | 8 | |g volume:60 |g year:2021 |g number:6 |g elocationid:239 |g pages:1-28 |g extent:28 |a Discrete Carleman estimates and three balls inequalities |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00526-021-02098-z |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20211230 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 3 | ||
| 999 | |a KXP-PPN1784402737 |e 4028148294 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Aingeru","family":"Fernández-Bertolin","role":"aut","display":"Fernández-Bertolin, Aingeru","roleDisplay":"VerfasserIn"},{"given":"Luz","family":"Roncal","role":"aut","roleDisplay":"VerfasserIn","display":"Roncal, Luz"},{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"roleDisplay":"VerfasserIn","display":"Stan, Diana","role":"aut","family":"Stan","given":"Diana"}],"title":[{"title_sort":"Discrete Carleman estimates and three balls inequalities","title":"Discrete Carleman estimates and three balls inequalities"}],"language":["eng"],"recId":"1784402737","note":["Gesehen am 30.12.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan"]},"id":{"eki":["1784402737"],"doi":["10.1007/s00526-021-02098-z"]},"origin":[{"dateIssuedDisp":"16 October 2021","dateIssuedKey":"2021"}],"relHost":[{"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1993-","dateIssuedKey":"1993","publisher":"Springer"}],"id":{"eki":["265508274"],"zdb":["1464202-5"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Calculus of variations and partial differential equations","title_sort":"Calculus of variations and partial differential equations"}],"disp":"Discrete Carleman estimates and three balls inequalitiesCalculus of variations and partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"recId":"265508274","language":["eng"],"pubHistory":["1.1993 -"],"titleAlt":[{"title":"Calculus of variations"}],"part":{"text":"60(2021), 6, Artikel-ID 239, Seite 1-28","volume":"60","extent":"28","year":"2021","issue":"6","pages":"1-28"}}],"physDesc":[{"extent":"28 S."}]} | ||
| SRT | |a FERNANDEZBDISCRETECA1620 | ||