Discrete Carleman estimates and three balls inequalities

We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fernández-Bertolin, Aingeru (VerfasserIn) , Roncal, Luz (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Stan, Diana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 October 2021
In: Calculus of variations and partial differential equations
Year: 2021, Jahrgang: 60, Heft: 6, Pages: 1-28
ISSN:1432-0835
DOI:10.1007/s00526-021-02098-z
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00526-021-02098-z
Volltext
Verfasserangaben:Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan

MARC

LEADER 00000caa a2200000 c 4500
001 1784402737
003 DE-627
005 20230317104306.0
007 cr uuu---uuuuu
008 211230s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00526-021-02098-z  |2 doi 
035 |a (DE-627)1784402737 
035 |a (DE-599)KXP1784402737 
035 |a (OCoLC)1341436628 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Fernández-Bertolin, Aingeru  |d 1988-  |e VerfasserIn  |0 (DE-588)1234193787  |0 (DE-627)1759087173  |4 aut 
245 1 0 |a Discrete Carleman estimates and three balls inequalities  |c Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan 
264 1 |c 16 October 2021 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.12.2021 
520 |a We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold under suitable regularity assumptions. As a key auxiliary result which might be of independent interest we present a Carleman estimate for these discrete operators. 
700 1 |a Roncal, Luz  |e VerfasserIn  |0 (DE-588)113785779X  |0 (DE-627)895133164  |0 (DE-576)491776039  |4 aut 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Stan, Diana  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Calculus of variations and partial differential equations  |d Berlin : Springer, 1993  |g 60(2021), 6, Artikel-ID 239, Seite 1-28  |h Online-Ressource  |w (DE-627)265508274  |w (DE-600)1464202-5  |w (DE-576)074889710  |x 1432-0835  |7 nnas  |a Discrete Carleman estimates and three balls inequalities 
773 1 8 |g volume:60  |g year:2021  |g number:6  |g elocationid:239  |g pages:1-28  |g extent:28  |a Discrete Carleman estimates and three balls inequalities 
856 4 0 |u https://doi.org/10.1007/s00526-021-02098-z  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20211230 
993 |a Article 
994 |a 2021 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3 
999 |a KXP-PPN1784402737  |e 4028148294 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Aingeru","family":"Fernández-Bertolin","role":"aut","display":"Fernández-Bertolin, Aingeru","roleDisplay":"VerfasserIn"},{"given":"Luz","family":"Roncal","role":"aut","roleDisplay":"VerfasserIn","display":"Roncal, Luz"},{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"roleDisplay":"VerfasserIn","display":"Stan, Diana","role":"aut","family":"Stan","given":"Diana"}],"title":[{"title_sort":"Discrete Carleman estimates and three balls inequalities","title":"Discrete Carleman estimates and three balls inequalities"}],"language":["eng"],"recId":"1784402737","note":["Gesehen am 30.12.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan"]},"id":{"eki":["1784402737"],"doi":["10.1007/s00526-021-02098-z"]},"origin":[{"dateIssuedDisp":"16 October 2021","dateIssuedKey":"2021"}],"relHost":[{"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1993-","dateIssuedKey":"1993","publisher":"Springer"}],"id":{"eki":["265508274"],"zdb":["1464202-5"],"issn":["1432-0835"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Calculus of variations and partial differential equations","title_sort":"Calculus of variations and partial differential equations"}],"disp":"Discrete Carleman estimates and three balls inequalitiesCalculus of variations and partial differential equations","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"recId":"265508274","language":["eng"],"pubHistory":["1.1993 -"],"titleAlt":[{"title":"Calculus of variations"}],"part":{"text":"60(2021), 6, Artikel-ID 239, Seite 1-28","volume":"60","extent":"28","year":"2021","issue":"6","pages":"1-28"}}],"physDesc":[{"extent":"28 S."}]} 
SRT |a FERNANDEZBDISCRETECA1620