Discrete Carleman estimates and three balls inequalities

We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fernández-Bertolin, Aingeru (VerfasserIn) , Roncal, Luz (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Stan, Diana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 October 2021
In: Calculus of variations and partial differential equations
Year: 2021, Jahrgang: 60, Heft: 6, Pages: 1-28
ISSN:1432-0835
DOI:10.1007/s00526-021-02098-z
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00526-021-02098-z
Volltext
Verfasserangaben:Aingeru Fernández-Bertolin, Luz Roncal, Angkana Rüland, Diana Stan
Beschreibung
Zusammenfassung:We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold under suitable regularity assumptions. As a key auxiliary result which might be of independent interest we present a Carleman estimate for these discrete operators.
Beschreibung:Gesehen am 30.12.2021
Beschreibung:Online Resource
ISSN:1432-0835
DOI:10.1007/s00526-021-02098-z