Sharing matters for generalization in deep metric learning

Learning the similarity between images constitutes the foundation for numerous vision tasks. The common paradigm is discriminative metric learning, which seeks an embedding that separates different training classes. However, the main challenge is to learn a metric that not only generalizes from trai...

Full description

Saved in:
Bibliographic Details
Main Authors: Milbich, Timo (Author) , Roth, Karsten (Author) , Brattoli, Biagio (Author) , Ommer, Björn (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: IEEE transactions on pattern analysis and machine intelligence
Year: 2022, Volume: 44, Issue: 1, Pages: 416-427
ISSN:1939-3539
DOI:10.1109/TPAMI.2020.3009620
Online Access:Verlag: http://dx.doi.org/10.1109/TPAMI.2020.3009620
Get full text
Author Notes:Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Ommer

MARC

LEADER 00000caa a2200000 c 4500
001 1784559024
003 DE-627
005 20220820102155.0
007 cr uuu---uuuuu
008 220104s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3009620  |2 doi 
035 |a (DE-627)1784559024 
035 |a (DE-599)KXP1784559024 
035 |a (OCoLC)1341436689 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Milbich, Timo  |d 1987-  |e VerfasserIn  |0 (DE-588)1152238108  |0 (DE-627)1013722582  |0 (DE-576)49975753X  |4 aut 
245 1 0 |a Sharing matters for generalization in deep metric learning  |c Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Ommer 
264 1 |c 2022 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.01.2022 
500 |a Date of Publication: 15 July 2020 
500 |a Date of current version 3 Dec. 2021 
520 |a Learning the similarity between images constitutes the foundation for numerous vision tasks. The common paradigm is discriminative metric learning, which seeks an embedding that separates different training classes. However, the main challenge is to learn a metric that not only generalizes from training to novel, but related, test samples. It should also transfer to different object classes. So what complementary information is missed by the discriminative paradigm? Besides finding characteristics that separate between classes, we also need them to likely occur in novel categories, which is indicated if they are shared across training classes. This work investigates how to learn such characteristics without the need for extra annotations or training data. By formulating our approach as a novel triplet sampling strategy, it can be easily applied on top of recent ranking loss frameworks. Experiments show that, independent of the underlying network architecture and the specific ranking loss, our approach significantly improves performance in deep metric learning, leading to new the state-of-the-art results on various standard benchmark datasets. 
650 4 |a deep learning 
650 4 |a Deep metric learning 
650 4 |a Encoding 
650 4 |a generalization 
650 4 |a Image color analysis 
650 4 |a image retrieval 
650 4 |a Measurement 
650 4 |a shared features 
650 4 |a similarity learning 
650 4 |a Standards 
650 4 |a Task analysis 
650 4 |a Training 
650 4 |a Training data 
700 1 |a Roth, Karsten  |e VerfasserIn  |0 (DE-588)1238837298  |0 (DE-627)1766559530  |4 aut 
700 1 |a Brattoli, Biagio  |e VerfasserIn  |0 (DE-588)1150865695  |0 (DE-627)1011126354  |0 (DE-576)497297523  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on pattern analysis and machine intelligence  |d New York, NY : IEEE, 1979  |g 44(2022), 1, Seite 416-427  |h Online-Ressource  |w (DE-627)324486421  |w (DE-600)2027336-8  |w (DE-576)094110980  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g pages:416-427  |g extent:12  |a Sharing matters for generalization in deep metric learning 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3009620  |x Verlag  |x Resolving-System 
951 |a AR 
992 |a 20220104 
993 |a Article 
994 |a 2022 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 700000  |d 708070  |e 700000PO1034893106  |e 708070PO1034893106  |k 0/700000/  |k 1/700000/708070/  |p 4  |y j 
998 |g 1150865695  |a Brattoli, Biagio  |m 1150865695:Brattoli, Biagio  |p 3 
998 |g 1238837298  |a Roth, Karsten  |m 1238837298:Roth, Karsten  |d 130000  |e 130000PR1238837298  |k 0/130000/  |p 2 
998 |g 1152238108  |a Milbich, Timo  |m 1152238108:Milbich, Timo  |d 700000  |d 708070  |e 700000PM1152238108  |e 708070PM1152238108  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN1784559024  |e 402952009X 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Sharing matters for generalization in deep metric learning","title":"Sharing matters for generalization in deep metric learning"}],"person":[{"role":"aut","family":"Milbich","roleDisplay":"VerfasserIn","given":"Timo","display":"Milbich, Timo"},{"role":"aut","family":"Roth","given":"Karsten","roleDisplay":"VerfasserIn","display":"Roth, Karsten"},{"given":"Biagio","roleDisplay":"VerfasserIn","display":"Brattoli, Biagio","family":"Brattoli","role":"aut"},{"role":"aut","family":"Ommer","display":"Ommer, Björn","roleDisplay":"VerfasserIn","given":"Björn"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Ommer"]},"recId":"1784559024","id":{"eki":["1784559024"],"doi":["10.1109/TPAMI.2020.3009620"]},"language":["eng"],"note":["Gesehen am 04.01.2022","Date of Publication: 15 July 2020","Date of current version 3 Dec. 2021"],"relHost":[{"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn"}],"origin":[{"dateIssuedKey":"1979","publisherPlace":"New York, NY","dateIssuedDisp":"1979-","publisher":"IEEE"}],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 07. März 2019"],"language":["eng"],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence","id":{"issn":["1939-3539"],"eki":["324486421"],"zdb":["2027336-8"]},"recId":"324486421","name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"pubHistory":["1.1979 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"issue":"1","year":"2022","pages":"416-427","volume":"44","text":"44(2022), 1, Seite 416-427","extent":"12"},"title":[{"title_sort":"IEEE transactions on pattern analysis and machine intelligence","subtitle":"TPAMI","title":"IEEE transactions on pattern analysis and machine intelligence"}],"titleAlt":[{"title":"Transactions on pattern analysis and machine intelligence"},{"title":"TPAMI"}]}],"physDesc":[{"extent":"12 S."}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}]} 
SRT |a MILBICHTIMSHARINGMAT2022