A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments

Background - The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Rème, Thierry (Author) , Hose, Dirk (Author) , De Vos, John (Author) , Vassal, Aurélien (Author) , Poulain, Pierre-Olivier (Author) , Pantesco, Véronique (Author) , Goldschmidt, Hartmut (Author) , Klein, Bernard (Author)
Format: Article (Journal)
Language:English
Published: 11 January 2008
In: BMC bioinformatics
Year: 2008, Volume: 9, Pages: 1-12
ISSN:1471-2105
DOI:10.1186/1471-2105-9-16
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1186/1471-2105-9-16
Verlag, lizenzpflichtig, Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248160/
Get full text
Author Notes:Thierry Rème, Dirk Hose, John De Vos, Aurélien Vassal, Pierre-Olivier Poulain, Véronique Pantesco, Hartmut Goldschmidt and Bernard Klein

MARC

LEADER 00000caa a2200000 c 4500
001 1786865262
003 DE-627
005 20220820112539.0
007 cr uuu---uuuuu
008 220121s2008 xx |||||o 00| ||eng c
024 7 |a 10.1186/1471-2105-9-16  |2 doi 
035 |a (DE-627)1786865262 
035 |a (DE-599)KXP1786865262 
035 |a (OCoLC)1341438203 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Rème, Thierry  |e VerfasserIn  |0 (DE-588)1248245369  |0 (DE-627)1783486228  |4 aut 
245 1 2 |a A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments  |c Thierry Rème, Dirk Hose, John De Vos, Aurélien Vassal, Pierre-Olivier Poulain, Véronique Pantesco, Hartmut Goldschmidt and Bernard Klein 
246 3 3 |a A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments 
264 1 |c 11 January 2008 
300 |b 1 Diagramm 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.01.2022 
520 |a Background - The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present) based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM) patients. - - Results - After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM). - - Conclusion - This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks particularly promising through international cooperative projects like the "Microarray Quality Control project of US FDA" MAQC as a predictive classifier for diagnostic, prognostic and response to treatment. Finally, it can be used as a powerful tool to mine published data generated on Affymetrix systems and more generally classify samples with binary feature values. 
700 1 |a Hose, Dirk  |d 1969-  |e VerfasserIn  |0 (DE-588)139824995  |0 (DE-627)613790308  |0 (DE-576)313431698  |4 aut 
700 1 |a De Vos, John  |e VerfasserIn  |4 aut 
700 1 |a Vassal, Aurélien  |e VerfasserIn  |4 aut 
700 1 |a Poulain, Pierre-Olivier  |e VerfasserIn  |4 aut 
700 1 |a Pantesco, Véronique  |e VerfasserIn  |4 aut 
700 1 |a Goldschmidt, Hartmut  |d 1956-  |e VerfasserIn  |0 (DE-588)102258023X  |0 (DE-627)717003809  |0 (DE-576)365637386  |4 aut 
700 1 |a Klein, Bernard  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t BMC bioinformatics  |d London : BioMed Central, 2000  |g 9(2008), Artikel-ID 16, Seite 1-12  |h Online-Ressource  |w (DE-627)326644814  |w (DE-600)2041484-5  |w (DE-576)107014688  |x 1471-2105  |7 nnas  |a A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments 
773 1 8 |g volume:9  |g year:2008  |g elocationid:16  |g pages:1-12  |g extent:12  |a A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments 
856 4 0 |u https://doi.org/10.1186/1471-2105-9-16  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248160/  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220121 
993 |a Article 
994 |a 2008 
998 |g 102258023X  |a Goldschmidt, Hartmut  |m 102258023X:Goldschmidt, Hartmut  |d 910000  |d 910100  |d 50000  |e 910000PG102258023X  |e 910100PG102258023X  |e 50000PG102258023X  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 7 
998 |g 139824995  |a Hose, Dirk  |m 139824995:Hose, Dirk  |d 910000  |d 910100  |e 910000PH139824995  |e 910100PH139824995  |k 0/910000/  |k 1/910000/910100/  |p 2 
999 |a KXP-PPN1786865262  |e 4040771605 
BIB |a Y 
SER |a journal 
JSO |a {"titleAlt":[{"title":"A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments"}],"title":[{"title":"A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments","title_sort":"new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","family":"Rème","display":"Rème, Thierry","roleDisplay":"VerfasserIn","given":"Thierry"},{"roleDisplay":"VerfasserIn","display":"Hose, Dirk","given":"Dirk","family":"Hose","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","given":"John","display":"De Vos, John","family":"De Vos"},{"family":"Vassal","roleDisplay":"VerfasserIn","given":"Aurélien","display":"Vassal, Aurélien","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Poulain, Pierre-Olivier","given":"Pierre-Olivier","family":"Poulain","role":"aut"},{"family":"Pantesco","given":"Véronique","roleDisplay":"VerfasserIn","display":"Pantesco, Véronique","role":"aut"},{"role":"aut","family":"Goldschmidt","roleDisplay":"VerfasserIn","display":"Goldschmidt, Hartmut","given":"Hartmut"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Bernard","display":"Klein, Bernard","family":"Klein"}],"name":{"displayForm":["Thierry Rème, Dirk Hose, John De Vos, Aurélien Vassal, Pierre-Olivier Poulain, Véronique Pantesco, Hartmut Goldschmidt and Bernard Klein"]},"id":{"doi":["10.1186/1471-2105-9-16"],"eki":["1786865262"]},"recId":"1786865262","language":["eng"],"note":["Gesehen am 21.01.2022"],"relHost":[{"origin":[{"dateIssuedKey":"2000","dateIssuedDisp":"2000-","publisherPlace":"London ; Berlin ; Heidelberg","publisher":"BioMed Central ; Springer"}],"pubHistory":["1.2000 -"],"recId":"326644814","id":{"eki":["326644814"],"zdb":["2041484-5"],"issn":["1471-2105"]},"title":[{"title":"BMC bioinformatics","title_sort":"BMC bioinformatics"}],"language":["eng"],"disp":"A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experimentsBMC bioinformatics","part":{"text":"9(2008), Artikel-ID 16, Seite 1-12","extent":"12","volume":"9","pages":"1-12","year":"2008"},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 22.05.20"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"physDesc":[{"extent":"12 S.","noteIll":"1 Diagramm"}],"origin":[{"dateIssuedDisp":"11 January 2008","dateIssuedKey":"2008"}]} 
SRT |a REMETHIERRNEWMETHODF1120