Quantifying identifiability to choose and audit epsilon in differentially private deep learning

Differential privacy allows bounding the influence that training data records have on a machine learning model. To use differential privacy in machine learning, data scientists must choose privacy parameters (epsilon, delta). Choosing meaningful privacy parameters is key, since models trained with w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernau, Daniel (VerfasserIn) , Eibl, Günther (VerfasserIn) , Grassal, Philip-William (VerfasserIn) , Keller, Hannah (VerfasserIn) , Kerschbaum, Florian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 October 2021
In: Proceedings of the VLDB Endowment
Year: 2021, Jahrgang: 14, Heft: 13, Pages: 3335-3347
ISSN:2150-8097
DOI:10.14778/3484224.3484231
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14778/3484224.3484231
Volltext
Verfasserangaben:Daniel Bernau, Günther Eibl, Philip W. Grassal, Hannah Keller, Florian Kerschbaum

MARC

LEADER 00000caa a2200000 c 4500
001 1789063205
003 DE-627
005 20220820124511.0
007 cr uuu---uuuuu
008 220209s2021 xx |||||o 00| ||eng c
024 7 |a 10.14778/3484224.3484231  |2 doi 
035 |a (DE-627)1789063205 
035 |a (DE-599)KXP1789063205 
035 |a (OCoLC)1341439591 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Bernau, Daniel  |e VerfasserIn  |0 (DE-588)1251423493  |0 (DE-627)1789065690  |4 aut 
245 1 0 |a Quantifying identifiability to choose and audit epsilon in differentially private deep learning  |c Daniel Bernau, Günther Eibl, Philip W. Grassal, Hannah Keller, Florian Kerschbaum 
264 1 |c 28 October 2021 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.02.2022 
520 |a Differential privacy allows bounding the influence that training data records have on a machine learning model. To use differential privacy in machine learning, data scientists must choose privacy parameters (epsilon, delta). Choosing meaningful privacy parameters is key, since models trained with weak privacy parameters might result in excessive privacy leakage, while strong privacy parameters might overly degrade model utility. However, privacy parameter values are difficult to choose for two main reasons. First, the theoretical upper bound on privacy loss (epsilon, delta) might be loose, depending on the chosen sensitivity and data distribution of practical datasets. Second, legal requirements and societal norms for anonymization often refer to individual identifiability, to which (epsilon, delta) are only indirectly related. We transform (epsilon, delta) to a bound on the Bayesian posterior belief of the adversary assumed by differential privacy concerning the presence of any record in the training dataset. The bound holds for multidimensional queries under composition, and we show that it can be tight in practice. Furthermore, we derive an identifiability bound, which relates the adversary assumed in differential privacy to previous work on membership inference adversaries. We formulate an implementation of this differential privacy adversary that allows data scientists to audit model training and compute empirical identifiability scores and empirical (epsilon, delta). 
650 4 |a composition theorem 
700 1 |a Eibl, Günther  |e VerfasserIn  |4 aut 
700 1 |a Grassal, Philip-William  |e VerfasserIn  |0 (DE-588)1251424066  |0 (DE-627)1789066859  |4 aut 
700 1 |a Keller, Hannah  |e VerfasserIn  |4 aut 
700 1 |a Kerschbaum, Florian  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a VLDB Endowment  |t Proceedings of the VLDB Endowment  |d [New York, NY] : Assoc. of Computing Machinery, 2008  |g 14(2021), 13, Seite 3335-3347  |h Online-Ressource  |w (DE-627)591517426  |w (DE-600)2478691-3  |w (DE-576)30297220X  |x 2150-8097  |7 nnas 
773 1 8 |g volume:14  |g year:2021  |g number:13  |g pages:3335-3347  |g extent:13  |a Quantifying identifiability to choose and audit epsilon in differentially private deep learning 
856 4 0 |u https://doi.org/10.14778/3484224.3484231  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220209 
993 |a Article 
994 |a 2021 
998 |g 1251424066  |a Grassal, Philip-William  |m 1251424066:Grassal, Philip-William  |d 700000  |d 708070  |e 700000PG1251424066  |e 708070PG1251424066  |k 0/700000/  |k 1/700000/708070/  |p 3 
999 |a KXP-PPN1789063205  |e 4054756913 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"28 October 2021"}],"id":{"eki":["1789063205"],"doi":["10.14778/3484224.3484231"]},"name":{"displayForm":["Daniel Bernau, Günther Eibl, Philip W. Grassal, Hannah Keller, Florian Kerschbaum"]},"physDesc":[{"extent":"13 S."}],"relHost":[{"disp":"VLDB EndowmentProceedings of the VLDB Endowment","note":["Gesehen am 19.06.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","display":"VLDB Endowment","role":"aut"}],"recId":"591517426","pubHistory":["1.2008 -"],"part":{"issue":"13","pages":"3335-3347","year":"2021","extent":"13","text":"14(2021), 13, Seite 3335-3347","volume":"14"},"titleAlt":[{"title":"VLDB Endowment"},{"title":"PVLDB"}],"title":[{"title_sort":"Proceedings of the VLDB Endowment","title":"Proceedings of the VLDB Endowment"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2008-","publisher":"Assoc. of Computing Machinery","dateIssuedKey":"2008","publisherPlace":"[New York, NY]"}],"id":{"issn":["2150-8097"],"eki":["591517426"],"zdb":["2478691-3"]}}],"title":[{"title":"Quantifying identifiability to choose and audit epsilon in differentially private deep learning","title_sort":"Quantifying identifiability to choose and audit epsilon in differentially private deep learning"}],"person":[{"family":"Bernau","given":"Daniel","display":"Bernau, Daniel","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Eibl","given":"Günther","display":"Eibl, Günther","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Grassal, Philip-William","role":"aut","family":"Grassal","given":"Philip-William"},{"roleDisplay":"VerfasserIn","display":"Keller, Hannah","role":"aut","family":"Keller","given":"Hannah"},{"family":"Kerschbaum","given":"Florian","roleDisplay":"VerfasserIn","display":"Kerschbaum, Florian","role":"aut"}],"note":["Gesehen am 09.02.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1789063205","language":["eng"]} 
SRT |a BERNAUDANIQUANTIFYIN2820